精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)求函数f(x)在区间[1,3]上的最小值;
(Ⅱ)证明:对任意m,n∈(0,+∞),都有f(m)≥g(n)成立.

(Ⅰ)解:由f(x)=xlnx,可得f'(x)=lnx+1.
单调递减,
单调递增.
所以函数f(x)在区间[1,3]上单调递增,又f(1)=0,
所以函数f(x)在区间[1,3]上的最小值为0.
(Ⅱ)证明:由(Ⅰ)可知f(x)=xlnx(x∈(0,+∞))在时取得最小值,
,可知
,可得
所以当x∈(0,1),g'(x)>0,g(x)单调递增,
当x∈(1,+∞),g'(x)<0,g(x)单调递减.
所以函数g(x)(x>0)在x=1时取得最大值,
,可知
所以对任意m,n∈(0,+∞),
都有f(m)≥g(n)成立.
分析:(Ⅰ)由f(x)=xlnx,得f'(x)=lnx+1.由此能求出函数f(x)在区间[1,3]上的最小值.
(Ⅱ)由f(x)=xlnx(x∈(0,+∞))在时取得最小值,知.由,得.所以函数g(x)(x>0)在x=1时取得最大值,由此能够证明对任意m,n∈(0,+∞),都有f(m)≥g(n)成立.
点评:本题考查函数f(x)在区间[1,3]上的最小值的求法和证明:对任意m,n∈(0,+∞),都有f(m)≥g(n)成立.解题时要认真审题,注意导数的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数)在上函数值总小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖北孝感高中高三年级九月调研考试理科数学试卷(解析版) 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省武威五中高一(下)3月月考数学试卷(解析版) 题型:解答题

已知函数,编写一个程序求函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=试画出求函数值的程序框图.

查看答案和解析>>

同步练习册答案