精英家教网 > 高中数学 > 题目详情
已知椭圆Γ:(a>b>0)过点A(0,2),离心率为,过点A的直线l与椭圆交于另一点M.
(I)求椭圆Γ的方程;
(II)是否存在直线l,使得以AM为直径的圆C,经过椭圆Γ的右焦点F且与直线 x-2y-2=0相切?若存在,求出直线l的方程;若不存在,请说明理由.
【答案】分析:(Ⅰ)由点A(0,2)可得b值,由离心率为可得=,再由a2=b2+c2,联立方程组即可求得a,b值;
(II)假设存在直线l,使得以AM为直径的圆C,经过椭圆后的右焦点F且与直线x-2y-2=0相切,根据以AM为直径的圆C过点F可得∠AFM=90°,求出直线MF方程,联立直线MF方程与椭圆方程可得求得M坐标,利用直线与圆相切的条件d=r分情况验证圆与直线x-2y-2=0相切即可;
解答:解:(Ⅰ)依题意得,解得
所以所求的椭圆方程为
(Ⅱ)假设存在直线l,使得以AM为直径的圆C,经过椭圆后的右焦点F且与直线x-2y-2=0相切,
因为以AM为直径的圆C过点F,所以∠AFM=90°,即AF⊥AM,
=-1,所以直线MF的方程为y=x-2,
消去y,得3x2-8x=0,解得x=0或x=
所以M(0,-2)或M(),
(1)当M为(0,-2)时,以AM为直径的圆C为:x2+y2=4,
则圆心C到直线x-2y-2=0的距离为d==
所以圆C与直线x-2y-2=0不相切;
(2)当M为()时,以AM为直径的圆心C为(),半径为r===
所以圆心C到直线x-2y-2=0的距离为d==r,
所以圆心C与直线x-2y-2=0相切,此时kAF=,所以直线l的方程为y=-+2,即x+2y-4=0,
综上所述,存在满足条件的直线l,其方程为x+2y-4=0.
点评:本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F1,O为坐标原点,点P在椭圆上,点Q在椭圆的右准线上,若
PQ
=2
F1O
F1Q
=λ(
F1P
|
F1P
|
+
F1O
|
F1O
|
)(λ>0)
则椭圆的离心率为(  )
A、
1
2
B、
3
2
C、
5
-1
2
D、
5
+1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,点E(
a2
c
,0)
在x轴上,若椭圆的离心率e=
2
2
,且|EF|=1.
(1)求a,b的值;
(2)若过F的直线交椭圆于A,B两点,且
OA
+
OB
与向量
m
=(4,-
2
)
共线(其中O为坐标原点),求证:
OA
OB
的夹角为
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长为4,且点(1,
3
2
)
在该椭圆上.
(1)求椭圆的方程.
(2)过椭圆右焦点的直线l交椭圆于A、B两点,若∠AOB是直角,其中O是坐标原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,与直线x+y-1=0相交于A,B两点,且OA⊥OB,为坐标原点.
(Ⅰ)求
1
a2
+
1
b2
的值;
(Ⅱ)若椭圆长轴长的取值范围是[
5
6
]
,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右准线分别为l1、l2,且分 别交x轴于C、D两点,从l1上一点A发出一条光线经过椭圆的左焦点F被x轴反射后与l2交于点B,若AF⊥BF且∠CAB=105°,则椭圆的离心率等于(  )
A、
6
-
2
2
B、
3
-1
C、
6
-
2
4
D、
3
-1
2

查看答案和解析>>

同步练习册答案