精英家教网 > 高中数学 > 题目详情
17.定义在R上的函数y=f(x)是奇函数,且x≥0时,f(x)=ln(x2-2x+2),则x<0时,f(x)的解析式是(  )
A.f(x)=ln(-x2-2x+2)B.f(x)=ln(x2+2x+2)C.f(x)=-ln(-x2-2x+2)D.f(x)=-ln(x2+2x+2)

分析 根据函数奇偶性的性质,利用对称性进行求解即可.

解答 解:若x<0,则-x>0,
∵当x≥0时,f(x)=ln(x2-2x+2),
∴当-x≥0时,f(-x)=ln(x2+2x+2),
∵函数y=f(x)是奇函数,
∴f(-x)=ln(x2+2x+2)=-f(x),
即f(x)=-ln(x2+2x+2),x<0,
故选:D.

点评 本题主要考查函数解析式的求解,利用函数奇偶性的性质进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知an>0,Sn为数列{an}的前n项和,且满足$a_n^2+2{a_n}$=4Sn+3
(1)求{an}的通项公式;  
(2)设${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$求bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为p=2cosθ,θ∈[0,$\frac{π}{2}$].
(1)在直角坐标系下求曲线C的方程;
(2)设点D在曲线C上,曲线C在D处的切线与直线l:y=$\sqrt{3}$x+2垂直,根据(1)中你得到的曲线C的方程,在直角坐标系下求D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)在R上是奇函数,当x>0时,f(x)=x2+4x,则x<0时f(x)的解析式f(x)=-x2+4x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.青岛西海岸某传媒公司计划2015年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告费收费标准分别为500元/分钟和200元/分钟,若甲、乙两个电视台做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元,则该公司的最大收益是70万元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知空间直角坐标系中两点A(1,-2,3),B(-1,3,1),则|AB|=$\sqrt{33}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正四棱锥的高为40,斜高为50,求它的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知正方体ABCD-A′B′C′D′,记过点A与三条直线AB,AD,AA′所成角都相等的直线条数为m,过点A与三个平面AB′,AC,AD′所成角都相等的直线的条数为n,则下面结论正确的是(  )
A.m=1,n=1B.m=4,n=1C.m=3,n=4D.m=4,n=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的奇函数f(x)满足f(x)=f(x+3),当x∈(0,$\frac{3}{2}$)时,f(x)=sin πx,且f($\frac{3}{2}$)=0,则函数f(x)在区间[-6,6]上的零点个数是(  )
A.18B.17C.8D.9

查看答案和解析>>

同步练习册答案