精英家教网 > 高中数学 > 题目详情
16.已知椭圆:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<3),左右焦点分别为F1,F2,过F1的直线l交椭圆于A、B两点,若|BF2|+|AF2|的最大值为10,则b的值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{6}$

分析 由椭圆的定义,求得|BF2|+|AF2|=12-(丨AF1丨+丨BF1丨),当丨AF1丨+丨BF1丨取最小值时$\frac{2{b}^{2}}{a}$,|BF2|+|AF2|取最大值,则$\frac{2{b}^{2}}{a}$=2,即可求得b的值.

解答 解:椭圆的焦点在x轴上,由椭圆的定义可知:丨AF1丨+丨AF2丨=2a=6,丨BF1丨+丨BF2丨=2a=6,
则丨AF2丨=6-丨AF1丨,丨BF2丨=6-丨BF1丨,
∴|BF2|+|AF2|=12-(丨AF1丨+丨BF1丨)=12-丨AB丨,
当丨AF1丨+丨BF1丨=丨AB丨取最小值$\frac{2{b}^{2}}{a}$时,|BF2|+|AF2|取最大值,
即$\frac{2{b}^{2}}{a}$=2,解得:b=$\sqrt{3}$,
b的值$\sqrt{3}$,
故选C.

点评 本题考查椭圆的标准方程,考查椭圆的定义,椭圆的通径的求法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有④⑥.
①2 000名运动员是总体;
②每个运动员是个体;
③所抽取的20名运动员是一个样本;
④样本容量为20;
⑤这个抽样方法可采用随机数表法抽样;
⑥每个运动员被抽到的机会相等.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线C:y2=8x,点P(0,4),点A在抛物线上,当点A到抛物线准线l的距离与点A到点P的距离之和最小时,延长AF交抛物线于点B,则△AOB的面积为4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\frac{π}{3}$是函数f(x)=2cos2x+asin2x+1的一个零点.
(Ⅰ)求实数a的值;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l1:2x+(m+1)y+4=0和直线l2:mx+3y-2=0平行,则m=(  )
A.-3或2B.2C.-2或3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设点P为有公共焦点F1、F2的椭圆M和双曲线Γ的一个交点,$cos∠{F_1}P{F_2}=\frac{4}{5}$,椭圆M的离心率为e1,双曲线Γ的离心率为e2.若e2=2e1,则e1=$\frac{{\sqrt{130}}}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{1-x,x≤0}\\{ax,x>0}\end{array}\right.$,若f(-1)=f(1),则实数a的值为(  )
A.1B.2C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设z1、z2是方程z2+2z+3=0的两根,则|z1-z2|=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数a,b,c满足1<b<a<2,0<c<$\frac{1}{8}$,则关于x的方程ax2+bx+c=0(  )
A.在区间(-1,0)内没有实数根
B.在区间(-1,0)内有一个实数根,在(-1,0)外有一个实数根
C.在区间(-1,0)内有两个相等的实数根
D.在区间(-1,0)内有两个不相等的实数根

查看答案和解析>>

同步练习册答案