【题目】为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某农科所记录了5组昼夜温差与100颗种子发芽数,得到如下资料:
组号 | 1 | 2 | 3 | 4 | 5 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
该所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求出线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是第1组与第5组的两组数据,请根据第2组至第4组的数据,求出
关于
的线性回归方程
;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(参考公式:
,
)
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若函数
在
上是增函数,求实数
的取值范围;
(2)求所有的实数
,使得对任意
时,函数
的图象恒在函数
图象的下方;
(3)若存在
,使得关于
的方程
有三个不相等的实数根,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应国家“精准扶贫,产业扶贫“的战略,进一步优化能源消费结构,某市决定在一地处山区的
县推进光伏发电项目,在该县山区居民中随机抽取50户,统计其年用电量得到以下统计表,以样本的频率作为概率.
用电量(度) |
|
|
|
|
|
户数 | 5 | 15 | 10 | 15 | 5 |
(1)在该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为
,求
的数学期望;
(2)已知该县某山区自然村有居民300户,若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以
元/度进行收购.经测算以每千瓦装机容量平均发电1000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的长轴长是短轴长的
倍,右焦点为
,点
分别是该椭圆的上、下顶点,点
是直线
上的一个动点(与
轴交点除外),直线
交椭圆于另一点
,记直线
,
的斜率分别为![]()
![]()
(1)当直线
过点
时,求
的值;
(2)求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
![]()
(Ⅰ)由折线图看出,可用线性回归模型拟合
与
的关系,请用相关系数加以说明;
(Ⅱ)建立
关于
的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
参考数据:
,
,
,
.
参考公式:相关系数
,
回归方程
,
,
本题中斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线![]()
若
,过点
的直线
交曲线
于
两点,且
,求直线
的方程;
若曲线
表示圆,且直线
与圆
交于
两点,是否存在实数
,使得以
为直径的圆过原点,若存在,求出实数
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com