精英家教网 > 高中数学 > 题目详情
1.数列$\frac{1}{2}$,$\frac{3}{4}$,$\frac{5}{8}$,$\frac{7}{16}$,…的通项公式为(  )
A.an=$\frac{2n-1}{2n}$B.an=$\frac{2n+1}{2n}$C.an=$\frac{2n-1}{{2}^{n}}$D.an=$\frac{2n+1}{{2}^{n}}$

分析 由数列数列$\frac{1}{2}$,$\frac{3}{4}$,$\frac{5}{8}$,$\frac{7}{16}$,…可知:分子为奇数组成的数列,分母为首项为2且公比为2的等比数列,即可求出通项公式.

解答 解:由数列数列$\frac{1}{2}$,$\frac{3}{4}$,$\frac{5}{8}$,$\frac{7}{16}$,…可知:分子为奇数组成的数列,分母为首项为2且公比为2的等比数列,因此其通项公式为an=$\frac{2n-1}{{2}^{n}}$.
故选:C.

点评 本题考查了等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合A={y|y=log2x,x>$\frac{1}{2}$},B={y|y=($\frac{1}{2}$)x,x>1},则A∩B(  )
A.{y|0<y<$\frac{1}{2}$}B.{y|0<y<1}C.{y|$\frac{1}{2}$<y<1}D.{y|-1<y<$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若定义在区间(-1,0)上的函数f(x)=log3a(x+1)满足f(x)<0,则a的取值范围是($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某单位有老年人30人,中年人90人,青年人60人,为了调查他们的身体健康状况,采用分层抽样的方法从他们中间抽取一个容量为36的样本,则应抽取老年人的人数是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=log2(x2-2x)的定义域为(-∞,0)∪(2,+∞),单调递减区间为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,点(n,2Sn)(n∈N+)均在函数y=x2+x的图象上
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax+$\frac{b}{x}$,且f(1)=2,f(2)=$\frac{5}{2}$.
(1)求a和b的值;
(2)判断函数f(x)的奇偶性;
(3)判断函数f(x)在区间(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\frac{a{x}^{2}-1}{x}$,且f′(x)≥0在定义域内恒成立,则a的取值范围为(  )
A.[0,+∞)B.[0,1]C.[1,+∞)D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.△ABC中,$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}$=$\overrightarrow{0}$O为△ABC内切圆的圆心,且AB=2,AC=3,BC=4.
(1)求证:$\overrightarrow{AG}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$);
(2)求$\overrightarrow{AC}•\overrightarrow{AO}$的值.

查看答案和解析>>

同步练习册答案