精英家教网 > 高中数学 > 题目详情

【题目】为了培养学生的数学建模和应用能力,某校组织了一次实地测量活动,如图,假设待测量的树木AE的高度H(m),垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β(D,C,E三点共线),试根据上述测量方案,回答如下问题:

(1)若测得α=60°、β=30°,试求H的值;
(2)经过分析若干次测得的数据后,大家一致认为适当调整标杆到树木的距离d(单位:m),使α与β之差较大时,可以提高测量精确度.
若树木的实际高度为8m,试问d为多少时,α﹣β最大?

【答案】
(1)解:在Rt△ABE中可得AD=

在Rt△ADE中可得AB= ,BD=

由AD﹣AB=DB,故得

得:H= = =6.

因此,算出的树木的高度H是6m.


(2)解:由题设知d=AB,得tanα= ,tanβ= = =

tan(α﹣β)= = = =

= ,(当且仅当d= )时,取等号)

故当H=8时,d=4 ,tan(α﹣β)最大.

因为0<β<α< ,则0<α﹣β< ,所以当d=4 时,α﹣β最大.


【解析】1、由题意可知,在Rt△ABE中可得AD= , 在Rt△ADE中可得AB=, BD= ,根据,即可得到H的值。
2、先用d分别表示出,利用两角和的正切公式求得tan(α﹣β),整理成基本不等式的形式,再根据基本不等式求出最大值α﹣β。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +ax,x>1.
(1)若函数f(x)在 处取得极值,求a的值;
(2)若方程(2x﹣m)lnx+x=0在(1,e]上有两个不等实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在[﹣1,1]上的奇函数,f(﹣1)=﹣1,且对任意a,b∈[﹣1,1],当a≠b时,都有
(1)解不等式f
(2)若f(x)≤m2﹣2km+1对所有x∈[﹣1,1],k∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,两个正方形ABCD和ADEF所在平面互相垂直,设M、N分别是BD和AE的中点,那么①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面.其中假命题的个数为( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x3﹣ax在(﹣∞,﹣1]上是单调函数,则a的取值范围是(
A.(3,+∞)
B.[3,+∞)
C.(﹣∞,3)
D.(﹣∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,M、N分别是棱SC、BC的中点,且MN⊥AM,若AB=2 ,则此正三棱锥外接球的体积是( )

A.12π
B.4 π
C. π
D.12 π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD= ,求三棱锥E﹣ACD的体积.

查看答案和解析>>

同步练习册答案