精英家教网 > 高中数学 > 题目详情
已知A={x|x2-2x-3<0},B={x|(
1
2
x-a≤1},A∩B=Φ,求实数a的取值范围.
考点:指、对数不等式的解法,交集及其运算
专题:集合
分析:首先化简两个集合,如果依据A∩B=Φ,找到a的范围.
解答: 解:由已知,A=(-1,3),B=[a,+∞),
要使A∩B=Φ,只要a≥3;
所以a的取值范围为a≥3.
点评:本题考查了集合的化简与运算;化简集合B时注意利用指数函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若定义运算a*b=
a,a≥b
b,b>a
则函数f(x)=3x*3-x的值域是(  )
A、(0,1]
B、[1,+∞)
C、(0,+∞)
D、(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,求以点P(2,-1)为中点的弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=16,直线l:3x+4y=25.
(1)求圆C的圆心到直线l的距离;
(2)求圆C上任意一点A到直线l的距离小于3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
2an+1
(n∈N*).
(1)求数列{an}的通项公式an
(2)设
2
bn
=
1
an
+1,求数列{bn•bn+1}的前n项和Tn
(3)在(2)的条件下,求数列{
1
an
•2 
1
bn
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,AD=2PA=2BC=2.
(Ⅰ)求证:平面PAC⊥平面PCD;
(Ⅱ)在线段PD上是否存在点E,使CE与平面PAD所成的角为45°?若存在,求出有
PE
PD
的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C右焦点F(1,0),且e=
1
2

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B都不是顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂在甲、乙两地的两个分工厂各生产某种机器12台和6台,现销售给A地10台,B地8台.已知从甲地调运1台至A地、B地的费用分别为400元和800元,从乙地调运1台至A地、B地的费用分别为300元和500元.
(1)设从乙地调运x台至A地,求总费用y关于x的函数关系式并求定义域;
(2)若总费用不超过9000元,则共有几种调运方法?
(3)求出总费用最低的调运方案及最低费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:?x∈R,使得x2-2x+m<0,命题q:方程
x2
m+1
+
y2
2-m
=1表示双曲线.
(1)写出命题p的否定形式;
(2)若命题p为假,命题q为真,求实数m的取值范围.

查看答案和解析>>

同步练习册答案