精英家教网 > 高中数学 > 题目详情

已知抛物线C的顶点为O(0,0),焦点F(0,1).

(1)求抛物线C的方程.

(2)过F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.

【解题提示】(1)知道抛物线的焦点易求抛物线的方程;(2)可以先设出A,B两点的坐标(设而不求),设出直线的方程,由已知条件把|MN|表示出来,进行求解.

【解析】(1)由题意可设抛物线C的方程为x2=2py(p>0),则=1,p=2,

所以抛物线C的方程为x2=4y.

(2)设A(x1,y1),B(x2,y2),

直线AB的方程为:y=kx+1,

消去y,整理得x2-4kx-4=0,

所以x1+x2=4k,x1x2=-4,

从而|x1-x2|=4,

解得点M的横坐标xM===,

同理点N的横坐标xN=,

所以|MN|=|xM-xN|

=

=8

=.

令4k-3=t,t≠0,则k=,

当t>0时,|MN|=2>2,

当t<0时,|MN|=2,

综上所述,当t=-,即k=-时,|MN|的最小值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C的顶点为坐标原点,椭圆C′的对称轴是坐标轴,抛物线C在x轴上的焦点恰好是椭圆C′的焦点
(Ⅰ)若抛物线C和椭圆C′都经过点M(1,2),求抛物线C和椭圆C′的方程;
(Ⅱ)已知动直线l过点p(3,0),交抛物线C于A,B两点,直线l′:x=2被以AP为直径的圆截得的弦长为定值,求抛物线C的方程;
(Ⅲ)在(Ⅱ)的条件下,分别过A,B的抛物线C的两条切线的交点E的轨迹为D,直线AB与轨迹D交于点F,求|EF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为
3
2
2
,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点为(1,0),焦点在x轴上,若直线y=x+2交抛物线C于A、B两点,线段AB的中点坐标为(5,7),求抛物线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞一模)已知抛物线C的顶点为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点为坐标原点,焦点在x轴上,直线y=x与抛物线C交于A、B两点,若P(1,1)为线段AB的中点,则抛物线C的标准方程为
y2=2x
y2=2x

查看答案和解析>>

同步练习册答案