精英家教网 > 高中数学 > 题目详情
3.函数$y=\frac{{\sqrt{x+2}}}{|x|-1}$的定义域是[-2,-1)∪(-1,1)∪(1,+∞).

分析 由根式内部的代数式大于等于0,分式的分母不为0联立不等式组求解.

解答 解:由$\left\{\begin{array}{l}{x+2≥0}\\{|x|-1≠0}\end{array}\right.$,解得x≥-2且x≠±1.
∴函数$y=\frac{{\sqrt{x+2}}}{|x|-1}$的定义域是[-2,-1)∪(-1,1)∪(1,+∞).
故答案为:[-2,-1)∪(-1,1)∪(1,+∞).

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知α,β是三次函数f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}$+2bx的两个极值点,且 α∈(0,1),β∈(1,2),则$\frac{b-1}{a-1}$的范围(  )
A.$(0,\frac{1}{2})$B.(0,1)C.$(-\frac{1}{2},0)$D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义在(0,+∞)上的函数f(x)对任意正数p,q都有$f(pq)=f(p)+f(q)-\frac{1}{2}$,当x>4时,f(x)>$\frac{3}{2}$,且f($\frac{1}{2}$)=0.
(1)求f(2)的值;
(2)证明:函数f(x)在(0,+∞)上是增函数;
(3)解关于x的不等式f(x)+f(x+3)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|x2+3x-4≥0}  B={x|$\frac{2x-1}{x+1}$<1}  
(1)求集合A、B;
(2)求A∪B,(CRB)∩A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|x≤2},a=$\sqrt{3}$,则下列结论中正确的是(  )
A.a⊆AB.{a}⊆AC.a∉AD.{a}∈A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{1}{{1+{x^2}}}$,
(1)利用函数单调性定义证明函数f(x)在(-∞,0]上是增函数;
(2)求函数$f(x)=\frac{1}{{1+{x^2}}}$在[-3,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在四面体ABCD中,E、F分别是棱AD、BC的中点,则向量$\overrightarrow{EF}$与$\overrightarrow{AB}$、$\overrightarrow{CD}$的关系是(  )
A.$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{CD}$B.$\overrightarrow{EF}=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{CD}$C.$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{CD}$D.$\overrightarrow{EF}=-\frac{1}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{CD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={1,a,5},B={3,b,8},若A∩B={1,3},则a+b的值为(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设F1、F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与椭圆C的另一个交点为N.若直线MN的斜率为$\frac{3}{4}$,则C的离心率等于$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案