精英家教网 > 高中数学 > 题目详情
在△ABC中,∠ACB=90°,∠BAC=30°,AB的垂直平分线分别交AB,AC于D,E(图甲),沿DE将△ADE折起,使得平面ADE⊥平面BDEC(图乙)。
(Ⅰ)若F是AB的中点,求证:CF∥平面ADE;
(Ⅱ)P是AC上任意一点,求证:平面ACD⊥平面PBE;
(Ⅲ)P是AC上一点,且AC⊥平面PBE,求二面角P-BE-C的大小.

(Ⅰ)证明:取BD的中点为M,连接FM,CM,
∵F为AB的中点,则MF∥AD,
由题知△BCD为等边三角形,
∴CM⊥BD,
又DE⊥BD,
∴CM∥DE,
∴面CFM∥面ADE,CF面CMF,
∴CF∥面ADE。
(Ⅱ)证明:由平面几何知识:BE⊥CD,AD⊥DE,平面ADE⊥平面BDEC, 
∴AD⊥平面BDEC,
∴AD⊥BE,
∴BE⊥面ACD,BE面PBE,
∴平面ACD⊥平面PBE。
(Ⅲ)解法一:由(Ⅱ)BE⊥面ACD,设BE∩CD=Q,
由题知BE⊥CD,BE⊥PQ,
∴PQC为二面角P-BE-C的平面角, AD=CD,
∴∠ACD=45°,
∴△ACD∽△CPQ,∠PQC=45°,
∴二面角P-BE-C的大小为45°。
解法二:建立空间直角坐标系{DE,DB,DA},
,则

∵AC⊥面PBE,AD⊥面BCED,
设二面角P-BE-C的大小为θ,

∴二面角P-BE-C的大小为45°。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=2,BC=1,cosC=
34

(1)求AB的值;
(2)求sin(2A+C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AC=
3
,∠A=45°,∠C=75°,则BC的长度是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=BC,AB=2,O为AB的中点,沿OC将△AOC折起到△A′OC的位置,使得直线A′B与平面ABC成30°角.
(1)若点A′到直线BC的距离为l,求二面角A′-BC-A的大小;
(2)若∠A′CB+∠OCB=π,求BC边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AC=2,BC=1,sinC=
35
,则AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于平面直角坐标系内的任意两点A(x1,y1),B(x2,y2),A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:||AB||=|x2-x1|+|y2-y1|.给出下列三个命题:
①若点C在线段AB上,则||AC||+||CB||=||AB||;
②在△ABC中,||AC||+||CB||>||AB||;
③在△ABC中,若∠A=90°,则||AB||2+||AC||2=||BC||2
其中错误的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案