精英家教网 > 高中数学 > 题目详情
11.已知α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),且满足$\sqrt{3}$cos2$\frac{α}{2}$+$\sqrt{2}$sin2$\frac{β}{2}$=$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}$,sin(2017π-α)=$\sqrt{2}$cos($\frac{5}{2}$π-β),则α+β=$\frac{5}{12}$π.

分析 由二倍角公式的变形、诱导公式化简已知的式子,利用平方关系、α和β的范围、特殊角的三角函数值求出α和β的值,可得α+β的值.

解答 解:∵$\sqrt{3}$cos2$\frac{α}{2}$+$\sqrt{2}$sin2$\frac{β}{2}$=$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}$,
∴$\frac{\sqrt{3}}{2}$(1+cosα)+$\frac{\sqrt{2}}{2}$(1-cosβ)=$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}$,
则$\frac{\sqrt{3}}{2}$cosα-$\frac{\sqrt{2}}{2}$cosβ=0,即$\sqrt{3}$cosα=$\sqrt{2}$cosβ,①
∵sin(2017π-α)=$\sqrt{2}$cos($\frac{5}{2}$π-β),
∴sin(π-α)=$\sqrt{2}$cos($\frac{1}{2}$π-β),
则sinα=$\sqrt{2}$sinβ,②
2+②2得,3cos2α+sin2α=2,
则$co{s}^{2}α=\frac{1}{2}$,
由α∈(0,$\frac{π}{2}$)得cosα=$\frac{\sqrt{2}}{2}$,则α=$\frac{π}{4}$,
代入②可得,sinβ=$\frac{1}{2}$,
由β∈(0,$\frac{π}{2}$)得β=$\frac{π}{6}$,
∴α+β=$\frac{π}{4}$+$\frac{π}{6}$=$\frac{5π}{12}$,
故答案为:$\frac{5π}{12}$.

点评 本题考查二倍角公式的变形、诱导公式,三角函数值的符号,以及平方关系的应用,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.命题P:“若a<b,则a+c<b+c”,则命题P的原命题、逆命题、否命题和逆否命题中正确命题的个数是(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知平行六面体ABCD-A1B1C1D1,设A1D1中点为M,CD的中点为N,若∠A1AD=∠A1AB=∠BAD=60°且AA1=AB=AD=1,则|AC1|=$\sqrt{6}$,若$\overrightarrow{MN}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,则x+y+z=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)在(-∞,+∞)上有意义,对于给定的正数k,定义函数fk(x)=$\left\{\begin{array}{l}f(x),f(x)<k\\ k,f(x)≥k\end{array}\right.$,取k=3,f(x)=($\frac{k}{2}$)|x|,则fk(x)=$\frac{k}{2}$的零点有(  )
A.0个B.1个
C.2个D.不确定,随k的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合I={x∈Z|-3<x<3},A={-2,0,1},B={-1,0,1,2},则(∁IA)∩B等于(  )
A.{-1}B.{2}C.{-1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sin(2ωx+$\frac{π}{3}$)(ω>0),最小正周期为π
(1)求ω的值;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位长度,再将所得图象各点的横坐标缩小为原来的$\frac{1}{2}$(纵坐标不变),得到函数g(x)的图象,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆x2+y2=1的切线与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1交于两点A,B,分别以A,B为切点的$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的切线交于点P,则点P的轨迹方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合M={x|0<x≤3},N={x|0<x≤2},则a∈M是a∈N的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$y=\frac{1}{x}$的图象与函数y=3sinπx(-1≤x≤1)的图象所有交点的横坐标与纵坐标的和等于(  )
A.4B.2C.1D.0

查看答案和解析>>

同步练习册答案