椭圆C:
=1(a>b>0)的离心率
,a+b=3
(1) 求椭圆C的方程;
(2) 如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值。
![]()
科目:高中数学 来源: 题型:
已知圆M:(x-
)2+y2=
,若椭圆C:
+
=1(a>b>0)的右顶点为圆M的圆心,离心率为
.
(1)求椭圆C的方程.
(2)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知圆M:(x-
)2+y2=
,若椭圆C:
+
=1(a>b>0)的右顶点为圆M的圆心,离心率为
.
(1)求椭圆C的方程.
(2)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练22练习卷(解析版) 题型:解答题
已知椭圆C:
+
=1(a>b>0)的焦距为4,且过点P(
,
).
(1)求椭圆C的方程;
(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点.过点Q作x轴的垂线,垂足为E.取点A(0,2
),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求椭圆方程;
(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点G(
,0),求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求椭圆C的方程;
(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M、N两点.若AM,AN的斜率k1,k2满足k1+k2=
,求直线l的方程;
(3)已知P是椭圆C上位于第一象限内的点,△PF1F2的重心为G,内心为I,求证:GI∥F1F2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com