精英家教网 > 高中数学 > 题目详情

椭圆C:=1(a>b>0)的离心率,a+b=3

(1)  求椭圆C的方程;

(2)  如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值。

  所以再由a+b=3得a=2,b=1,

        ①

将①代入,解得

又直线AD的方程为      ②

①与②联立解得

三点共线可角得

所以MN的分斜率为m=,则(定值)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆M:(x-)2+y2=,若椭圆C:+=1(a>b>0)的右顶点为圆M的圆心,离心率为.

(1)求椭圆C的方程.

(2)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x-)2+y2=,若椭圆C:+=1(a>b>0)的右顶点为圆M的圆心,离心率为.

(1)求椭圆C的方程.

(2)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练22练习卷(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).

(1)求椭圆C的方程;

(2)Q(x0,y0)(x0y00)为椭圆C上一点.过点Qx轴的垂线,垂足为E.取点A(0,2),连接AE,过点AAE的垂线交x轴于点D.G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:=1(a>b>0)过点(1,),且离心率e=.

(1)求椭圆方程;

(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点G(,0),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:=1(a>b>0)过点(1,),F1、F2分别为椭圆C的左、右两个焦点,且离心率e=.

(1)求椭圆C的方程;

(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M、N两点.若AM,AN的斜率k1,k2满足k1+k2=,求直线l的方程;

(3)已知P是椭圆C上位于第一象限内的点,△PF1F2的重心为G,内心为I,求证:GI∥F1F2.

查看答案和解析>>

同步练习册答案