精英家教网 > 高中数学 > 题目详情
(2009•济宁一模)已知抛物线和双曲线都经过点M(1,2),它们在x轴上有共同焦点,抛物线的顶点为坐标原点,则双曲线的标准方程是
x2
3-2
2
-
y2
2
2
-2
=1
x2
3-2
2
-
y2
2
2
-2
=1
分析:设抛物线方程为y2=2px(p>0),将M(1,2)代入,可求抛物线方程,再利用双曲线的定义可求双曲线方程.
解答:解:设抛物线方程为y2=2px(p>0),
将M(1,2)代入y2=2px,得P=2.
∴抛物线方程为y2=4x,焦点为F(1,0)
由题意知双曲线的焦点为F1(-1,0),F2(1,0)
∴c=1
对于双曲线,2a=||MF1|-|MF2||=2
2
-2

a=
2
-1

a2=3-2
2
b2=2
2
-2

∴双曲线方程为
x2
3-2
2
-
y2
2
2
-2
=1

故答案为:
x2
3-2
2
-
y2
2
2
-2
=1
点评:本题主要考查双曲线的标准方程、利用待定系数法求双曲线方程,同时考查恒过定点问题,注意挖掘题目隐含,将问题等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•济宁一模)一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•济宁一模)如图,在三棱柱ABC-A1B1C1中,所有的棱长都为2,∠A1AC=60°
(Ⅰ)求证:A1B⊥AC;
(Ⅱ)当三棱柱ABC-A1B1C1的体积最大时,求平面A1B1C1与平面ABC所成的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•济宁一模)已知向量
a
=(1,2),
b
=(0,1),设
u
=
a
+k
b
v
=2
a
-
b
,若
u
v
,则实数k的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•济宁一模)已知两条不重合的直线m、n和两个不重合的平面α、β,有下列命题:
①若m⊥n,m⊥α,则n∥α; 
②若m⊥α,n⊥β,m∥n,则α∥β; 
③若m、n是两条异面直线,m?α,n?β,m∥β,n∥α,则α∥β; 
④若α⊥β,α∩β=m,n?β,n⊥m,则n⊥α.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•济宁一模)复数满足z(1+i)=2i,则复数的实部与虚部之差为(  )

查看答案和解析>>

同步练习册答案