精英家教网 > 高中数学 > 题目详情
10.函数f(x)在定义域[-1,1]内是递增的函数,而且f(x-1)<f(2x-1),则x的取值范为(0,1).

分析 由函数单调性及定义域可得-1<x-1<2x-1<1,解出即可.

解答 解:∵函数f(x)在定义域[-1,1]内是递增的函数,而且f(x-1)<f(2x-1),
∴-1<x-1<2x-1<1,
解得0<x<1.
故答案为(0,1).

点评 本题考查了函数单调性的应用,注意定义域的范围,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.cos65°•sin85°+sin65°•sin5°=$\frac{1}{2}$,sin15°•cos15°=$\frac{1}{4}$,2cos2$\frac{π}{12}$-1=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设复数z满足(1-3i)z=3+i,则z=(  )
A.一iB.iC.$\frac{3}{5}$-$\frac{4}{5}$iD.$\frac{3}{5}$+$\frac{4}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知全集U={1,2,3,4,5,6,7,8},(∁UA)∩B={1,3,4},(∁UA)∩(∁UB)={5,7},A∩B={2},则集合A={2,6,8}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$y=\frac{1}{\sqrt{{-x}^{2}+2x+3}}$的单调减区间是(  )
A.(1,3)B.(-∞,1)C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“?x0∈N,x02+2x0≥3”的否定为(  )
A.?x0∈N,x02+2x0≤3B.?x∈N,x2+2x≤3C.?x0∈N,x02+2x0<3D.?x∈N,x2+2x<3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于(  )
A.120°B.60°C.30°D.60°或30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程x2+3x-1=0的根可视为函数y=x+3的图象与函数y=$\frac{1}{x}$的图象交点的横坐标,则方程x2+3x-1=0的实根x0所在的范围是(  )
A.0<x0<$\frac{1}{4}$B.$\frac{1}{4}$<x0<$\frac{1}{3}$C.$\frac{1}{3}$<x0<$\frac{1}{2}$D.$\frac{1}{2}$<x0<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线y=-$\frac{1}{4}$x2的焦点为F,则过F的最短弦长为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.4D.8

查看答案和解析>>

同步练习册答案