精英家教网 > 高中数学 > 题目详情
设a为实数,函数f(x)=2x2+(x-a)|x-a|.
(1)当a=1时,判断函数f(x)在(1,+∞)的单调性并用定义证明;
(2)求f(x)的最小值.
分析:(1)当a=1,x>1时,f(x)=3x2-2x+1,用函数的单调性的定义证明它是增函数.
(2)当x≥a时,根据f(x)的解析式,分a≥0和 a<0两种情况,求出f(x)的最小值.当x≤a时,根据f(x)的解析式,分a≥0和 a<0两种情况,求出f(x)的最小值,
综合可得结论.
解答:解:(1)当a=1,x>1时,f(x)=2x2+(x-1)|x-1|=2x2+(x-1)2 =3x2-2x+1,…(1分)
则函数f(x)在(1,+∞)上单调递增.
证明:设1<x1<x2,由于f(x1)-f(x2)=3x12-2x1+1-(3x22-2x2+1)=(x1-x2)[3(x1+x2)-2],…(4分)
∵x1<x2,∴x1-x2<0,∵1<x1<x2,∴x1+x2>2,从而得3(x1+x2)-2>0,
∴f(x1)-f(x2)<0,故函数f(x)在(1,+∞)上单调递增.…(6分)
(2)∵当x≥a时,f(x)=3x2-2ax+a2,…(7分)
f(x)min=
f(a),a≥0
f(
a
3
),a<0
=
2a2,a≥0
2a2
3
,a<0
.…(9分)
当x≤a时,f(x)=x2+2ax-a2,…(10分)
f(x)min=
f(-a),a≥0
f(a),a<0
=
-2a2,a≥0
2a2,a<0
.…(12分)
综上,f(x)min=
-2a2,a≥0
2a2
3
,a<0
.…(14分)
点评:本题主要考查带有绝对值的函数,函数的单调性的定义和证明,求函数的最小值,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x2-|x-a|+1,x∈R.
(1)若f(x)是偶函数,试求a的值;
(2)在(1)的条件下,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=2x2+(x-a)|x-a|
(1)求f(a+1);
(2)若a=3,用分段函数的形式表示f(x),并求出f(x)的最小值;
(3)求f(x)的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=ex-2x+2a,x∈R.求f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为
y=-2x
y=-2x

查看答案和解析>>

同步练习册答案