精英家教网 > 高中数学 > 题目详情
关于x的方程(x2-1)2-|x2-1|+k=0,下列判断:
①存在实数k,使得方程有四个不同的实数根;
②存在实数k,使得方程有七个不同的实数根;
③存在实数k,使得方程有八个不同的实数根. 
其中正确的有
①③
①③
(填相应的序号).
分析:将方程根的问题转化成函数图象的问题,画出函数图象,结合图象可得结论.
解答:解:关于x的方程(x2-1)2-|x2-1|+k=0可化为(x2-1)2-(x2-1)+k=0(x≥1或x≤-1)(1)
或(x2-1)2+(x2-1)+k=0(-1<x<1)(2)
①当k=
1
4
时,方程(1)有两个不同的实根±
6
2
,方程(2)有两个不同的实根±
2
2

即原方程恰有4个不同的实根;
②当k=0时,原方程恰有5个不同的实根,由图象可知方程有七个不同的实数根;
③当k=
2
9
时,方程(1)的解为±
15
3
,±
2
3
3
,方程(2)的解为±
3
3
,±
6
3

即原方程恰有8个不同的实根.
故答案为:①③.
点评:本题主要考查了分段函数,以及函数与方程的思想,数形结合的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题:
①存在实数k,使得方程恰有2个不同的实根;
②存在实数k,使得方程恰有4个不同的实根;
③存在实数k,使得方程恰有5个不同的实根;
④存在实数k,使得方程恰有8个不同的实根;
其中假命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

a,b,c分别是△ABC中角A,B,C的对边,且(sinB+sinC+sinA)(sinB+sinC-sinA)=
185
sinBsinC,边b和c是关于x的方程:x2-9x+25cosA=0的两根(b>c),D为△ABC内任一点,点D到三边距离之和为d.
(1)求角A的正弦值;       
 (2)求边a,b,c;      
(3)求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程
4-x2
=x+a有且只有一个实根,则a的取值范围是
[-2,2)∪{2
2
}
[-2,2)∪{2
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程ax=-x2+2x+a(a>0,且a≠1)的解的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程
|1-x2|
+kx=
2
有3个不等实数根,则实数k的取值范围为
 

查看答案和解析>>

同步练习册答案