精英家教网 > 高中数学 > 题目详情

若数列{xn}满足xn-xn-1=d(n∈N*,n≥2,其中d为常数),x1+x2+…+x20=80,则x5+x16=________.

8
分析:根据数列{xn}满足xn-xn-1=d,得到此数列为等差数列,由x1+x2+…+x20=80,利用等差数列的前n项和公式表示出前20项的和等于80,根据等差数列的性质可知项数之和相等的两项之和相等,得到10(x5+x16)等于80,即可求出x5+x16的值.
解答:根据题意可知数列{xn}为等差数列,
则x1+x2+…+x20==10(a1+a20)=10(x5+x16)=80,
所以x5+x16=8.
故答案为:8
点评:此题考查学生掌握数列为等差数列的确定方法,灵活运用等差数列的性质化简求值,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)在(-1,1)上有意义,f(
1
2
)=-1
,且对任意的x、y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
)

(1)若数列{xn}满足x1=
1
2
xn+1=
2xn
1+
x
2
n
(n∈N*),求f(xn)

(2)求1+f(
1
5
)+f(
1
11
)…+f(
1
n2+3n+1
)+f(
1
n+2
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

①不等式|
x+1x-1
|≥1的解集是
(0,1)∪(1,+∞)
(0,1)∪(1,+∞)

②若数列{xn}满足lgxn+1=1+lgxn,且x1+x2+…+x100=100,则lg(x101+x102+…+x200)=
102
102

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•佛山一模)设n∈N+,圆Cn:x2+y2=R
 
2
n
(Rn>0)与y轴正半轴的交点为M,与曲线y=
x
的交点为N(xn,yn),直线MN与x轴的交点为A(an,0).
(1)用xn表示Rn和an
(2)若数列{xn}满足:xn+1=4xn+3,x1=3.
①求常数P的值使数列{an+1-p•an}成等比数列;
②比较an与2•3n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在(-1,1)有意义,f(
1
2
)=-1且任意的x、y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
),若数列{xn}满足x1=
1
2
,xn+1=
2xn
1+
x
2
n
(n∈N*),求f(xn).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知函数f(x)在(-1,1)上有意义,f(
1
2
)=-1,且对任意的x,y∈(-1,1),都有f(x)+f(y)=f(
x+y
1+xy
).
(1)判断函数f(x)的奇偶性;
(2)若数列{xn}满足x1=
1
2
xn+1=
2xn
1+
x
2
n
(n∈N*),求f(xn
).
(3)求证:
1
f(x1)
+
1
f(x2)
+…+
1
f(xn)
>-
2n+3
n+1
(n∈N*
).

查看答案和解析>>

同步练习册答案