ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊǺ¯Êýf£¨x£©=
1
2
+log2
x
1-x
ͼÏóÉÏÈÎÒâÁ½µã£¬ÇÒ
OM
=
1
2
£¨
OA
+
OB
£©£¬ÒÑÖªµãMµÄºá×ø±êΪ
1
2
£¬ÇÒÓÐSn=f£¨
1
n
£©+f£¨
2
n
£©+¡­+f£¨
n-1
n
£©£¬ÆäÖÐn¡ÊN*ÇÒn¡Ý2£¬
£¨1£©ÇóµãMµÄ×Ý×ø±êÖµ£»
£¨2£©Çós2£¬s3£¬s4¼°Sn£»
£¨3£©ÒÑÖªan=
1
(Sn+1)(Sn+1+1)
£¬ÆäÖÐn¡ÊN*£¬ÇÒTnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÈôTn¡Ü¦Ë£¨Sn+1+1£©¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇó¦ËµÄ×îСÕýÕûÊýÖµ£®
·ÖÎö£º£¨1£©ÓÉ
OM
=
1
2
£¨
OA
+
OB
£©ÖªMΪÏ߶ÎABµÄÖе㣬ÓÉMµÄºá×ø±êΪ
1
2
µÃx1+x2=1£¬ÓÉ´Ë¿ÉÇóµÃy1+y2£¬´Ó¶ø¿ÉµÃµãMµÄ×Ý×ø±ê£»
£¨2£©¸ù¾ÝSn=f£¨
1
n
£©+f£¨
2
n
£©+¡­+f£¨
n-1
n
£©£¬·Ö±ðÁîn=2£¬3£¬4¼´¿ÉÇóµÃs2£¬s3£¬s4£»ÓÉ£¨1£©Öª£¬ÓÉ
1
n
+
n-1
n
=1
£¬µÃf£¨
1
n
£©+f£¨
n-1
n
£©=1£¬´Ó¶ø¿ÉÇóµÃ2Sn£»
£¨3£©Ïȱíʾ³öan£¬ÀûÓÃÁÑÏîÏàÏû·¨ÇóµÃTn£¬·ÖÀë³ö²ÎÊý¦Ëºóת»¯ÎªÇóº¯ÊýµÄ×îÖµ¿É½â¾ö£¬ÀûÓûù±¾²»µÈʽ¿ÉµÃ×îÖµ£»
½â´ð£º½â£º£¨1£©ÒÀÌâÒ⣬ÓÉ
OM
=
1
2
£¨
OA
+
OB
£©ÖªMΪÏ߶ÎABµÄÖе㣬
ÓÖÒòΪMµÄºá×ø±êΪ
1
2
£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
¡à
x1+x2
2
=
1
2
£¬¼´x1+x2=1£¬
¡ày1+y2=1+log2(
x1
1-x1
x2
1-x2
)
=1+log21=1£¬
ËùÒÔ
y1+y2
2
=
1
2
£¬
¼´µãMµÄºá×ø±êΪ¶¨Öµ
1
2
£»
£¨2£©S2=f(
1
2
)=
1
2
+log2
1
2
1-
1
2
=
1
2
£¬
S3=f(
1
3
)+f(
2
3
)
=
1
2
+log2
1
3
1-
1
3
+
1
2
+log2
2
3
1-
2
3
=1£¬
S4=f(
1
4
)+f(
2
4
)+f(
3
4
)
=
1
2
+log2
1
4
1-
1
4
+
1
2
+log2
2
4
1-
2
4
+
1
2
+log2
3
4
1-
3
4
=
3
2
£¬
ÓÉ£¨1£©Öª£¬ÓÉ
1
n
+
n-1
n
=1
£¬µÃf£¨
1
n
£©+f£¨
n-1
n
£©=1£¬
ÓÖSn=f£¨
1
n
£©+f£¨
2
n
£©+¡­+f£¨
n-1
n
£©=f£¨
n-1
n
£©+f£¨
n-2
n
£©+¡­+f£¨
1
n
£©£¬
ËùÒÔ2Sn=£¨n-1£©¡Á1£¬¼´Sn=
n-1
2
£¨n¡ÊN*ÇÒn¡Ý2£©£»
£¨3£©µ±n¡Ý2ʱ£¬an=
1
(Sn+1)(Sn+1+1)
=
4
(n+1)(n+2)
£¬
ÓÖn=1ʱ£¬a1=
4
2¡Á3
=
2
3
Ò²Êʺϣ¬
ËùÒÔan=
4
(n+1)(n+2)
(n¡ÊN*)
£¬
¡àTn=
4
2¡Á3
+
4
3¡Á4
+¡­+
4
(n+1)(n+2)
=4£¨
1
2
-
1
3
+
1
3
-
1
4
+¡­+
1
n+1
-
1
n+2
£©
=4£¨
1
2
-
1
n+2
£©=
2n
n+2
£¨n¡ÊN*£©£¬
ÓÉ
2n
n+2
¡Ü¦Ë(
n
2
+1)
ºã³ÉÁ¢£¨n¡ÊN*£©ÍƵæˡÝ
4n
n2+4n+4
£¬
¶ø
4n
n2+4n+4
=
4
n+
4
n
+4
¡Ü
4
4+4
=
1
2
£¨µ±ÇÒ½öµ±n=2È¡µÈºÅ£©£¬
¡à¦Ë¡Ý
1
2
£¬¡à¦ËµÄ×îСÕýÕûÊýΪ1£®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë²»µÈʽ¡¢ÊýÁÐÓëÏòÁ¿µÄ×ۺϣ¬¿¼²éºã³ÉÁ¢ÎÊÌ⣬¿¼²éת»¯Ë¼Ï룬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºx2=4yµÄ½¹µãΪF£¬Ö±Ïßl¹ýµãF½»Å×ÎïÏßCÓÚA¡¢BÁ½µã£®
£¨¢ñ£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Çó
1
y1
+
1
y2
µÄÈ¡Öµ·¶Î§£»
£¨¢ò£©ÊÇ·ñ´æÔÚ¶¨µãQ£¬Ê¹µÃÎÞÂÛABÔõÑùÔ˶¯¶¼ÓСÏAQF=¡ÏBQF£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊǺ¯Êýf(x)=
1
2
+log2
x
1-x
µÄͼÏóÉÏÁ½µã£¬ÇÒ
OM
=
1
2
(
OA
+
OB
)
£¬OΪ×ø±êÔ­µã£¬ÒÑÖªµãMµÄºá×ø±êΪ
1
2
£®
£¨¢ñ£©ÇóÖ¤£ºµãMµÄ×Ý×ø±êΪ¶¨Öµ£»
£¨¢ò£©¶¨Ò嶨ÒåSn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+¡­+f(
n-1
n
)
£¬ÆäÖÐn¡ÊN*ÇÒn¡Ý2£¬ÇóS2011£»
£¨¢ó£©¶ÔÓÚ£¨¢ò£©ÖеÄSn£¬Éèan=
1
2Sn+1
(n¡ÊN*)
£®Èô¶ÔÓÚÈÎÒân¡ÊN*£¬²»µÈʽkan3-3an2+1£¾0ºã³ÉÁ¢£¬ÊÔÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇÍÖÔ²
y2
a2
+
x2
b2
=1(a£¾b£¾0)
ÉϵÄÁ½µã£¬ÒÑÖªOΪ×ø±êÔ­µã£¬ÍÖÔ²µÄÀëÐÄÂÊe=
3
2
£¬¶ÌÖ᳤Ϊ2£¬ÇÒ
m
=(
x1
b
£¬
y1
a
)£¬
n
=(
x2
b
£¬
y2
a
)
£¬Èô
m
n
=0
£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßAB¹ýÍÖÔ²µÄ½¹µãF£¨0£¬c£©£¨cΪ°ë½¹¾à£©£¬Çó¡÷AOBµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©¡¢C£¨x3£¬y3£©ÊÇÅ×ÎïÏßy=x2ÉϵÄÈý¸ö¶¯µã£¬ÆäÖÐx3£¾x2¡Ý0£¬¡÷ABCÊÇÒÔBΪֱ½Ç¶¥µãµÄµÈÑüÖ±½ÇÈý½ÇÐΣ®
£¨1£©ÇóÖ¤£ºÖ±ÏßBCµÄбÂʵÈÓÚx2+x3£¬Ò²µÈÓÚ
x2-x1x3-x2
£»
£¨2£©ÇóA¡¢CÁ½µãÖ®¼ä¾àÀëµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸