精英家教网 > 高中数学 > 题目详情
16.双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1的焦点到渐近线的距离为2.

分析 求出双曲线的焦点坐标,渐近线方程,利用距离公式求解即可.

解答 解:双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1的一个焦点($\sqrt{6}$,0),一条渐近线方程为:y=$\sqrt{2}x$,
双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1的焦点到渐近线的距离为:$\frac{\sqrt{2}•\sqrt{6}}{\sqrt{2+1}}$=2.
故答案为:2.

点评 本题考查双曲线的简单性质的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足a1=1,a2=2,an+2=(2+cosnπ)(an-1)+3,n∈N*.那么数列{an}的通项公式为an=$\left\{\begin{array}{l}{n,n为奇数}\\{2×{3}^{\frac{n-2}{2}},n为偶数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图1,在平面直角坐标系xOy中,椭圆E的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,A,B为椭圆的左右顶点,F1、F2是左、右焦点.
(1)已知椭圆内有一点P(1,-1),在椭圆上有一动点M,则求|MP|+|MF2|的最大值和最小值分别是多少?
(2)如图1,若直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.
(3)如图2,若直线l过左焦点F1交椭圆于A,B两点,直线MA,MB分别交直线x=-4于C,D两点,求证:以线段CD为直径的圆恒过两个定点.
(4)如图3,若M,N是椭圆E上关于原点对称的两点,点P是椭圆上除M,N外的任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN为定值.
(5)如图4,若动直线l:y=kx+m与椭圆E有且只有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.
(6)如图5,若过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.试探究:线段OF2上是否存在点M(m,0)使得$\overrightarrow{QP}•\overrightarrow{MP}=\overrightarrow{PQ}•\overrightarrow{MQ}$,若存在,求出实数的取值范围,若不存在,说明理由.
(7)如图6,若点P为抛物线D:y2=4x上的动点,设O为坐标原点,是否存在同时满足下列两个条件的△APM?①点M在椭圆C上;②点O为△APM的重心,若存在,求出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.柯西不等式是由数学家柯西在研究数学分析中的“流数”问题时得到的.具体表述如下:对任意实数a1,a2,…,an和b1,b2,…bn(n∈N+,n≥2),都有(a12+a22+…+an2)(b12+b22+…bn2)≥(a1b1+a2b2+…+anbn2
(1)证明n=2时柯西不等式成立,并指出等号成立的条件;
(2)若对任意x∈[2,6],不等式3$\sqrt{x-2}$+2$\sqrt{6-x}$≤m恒成立,求实数m的取值范围(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).
(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?
(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直三棱柱ABC-A1B1C1中,已知A1C1⊥B1C1,CC1=2BC=2.
(1)当AC=2时,求异面直线BC1与AB1所成角的余弦值;
(2)若直线AB1与平面A1BC1所成角的正弦值为$\frac{2}{5}$,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在空间中,给出下列四个命题:
①平行于同一个平面的两条直线互相平行;
②垂直于同一个平面的两个平面互相平行;
③平行于同一条直线的两条直线互相平行;
④垂直于同一条直线的两条直线互相平行.
其中真命题的序号是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知圆心为C(4,3)的圆经过原点O.
(Ⅰ)求圆C的方程;
(Ⅱ)设直线3x-4y+m=0与圆C交于A,B两点.若|AB|=8,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.通过实验数据可知,某液体的蒸发速度y(单位:升/小时)与液体所处环境的温度x(单位:℃)近似地满足函数关系y=ekx+b(e为自然对数的底数,k,b为常数).若该液体在0℃的蒸发速度是0.1升/小时,在30℃的蒸发速度为0.8升/小时,则该液体在20℃的蒸发速度为0.4升/小时.

查看答案和解析>>

同步练习册答案