精英家教网 > 高中数学 > 题目详情
已知f(x)(x∈R,且x≠kπ+
π
2
(k∈Z))是周期为π的函数,当x∈(-
π
2
π
2
)时,f(x)=2x+cosx.设a=f(-1),b=f(-2),c=f(-3)则(  )
A.c<b<aB.b<c<aC.c<a<bD.a<c<b
已知f(x)(x∈R,且x≠kπ+
π
2
(k∈Z))是周期为π的函数,当x∈(-
π
2
π
2
)时,f(x)=2x+cosx,
故f′(x)=2-sinx>0,故函数f(x)在∈(-
π
2
π
2
)上是增函数.
再由 a=f(-1),b=f(-2)=f(π-2),c=f(-3)=f(π-3),且π-2>π-3>-1,
可得 b>c>a,
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若函数是奇函数,则实数对_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数
的奇偶性依次为(   )
A.偶函数,奇函数B.奇函数,偶函数
C.偶函数,偶函数D.奇函数,奇函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[ 2,3 ] 时, 222233.(1)求的解析式;(2)若上为增函数,求的取值范围;(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)对于函数为奇函数(Ⅰ)求的值;(Ⅱ)用函数单调性定义及指数函数性质证明: 上是增函数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2-bx+1.
(1)若f(x)<0的解集是(
1
4
1
3
)
,求实数a,b的值;
(2)若a+b+2=0,且函数f(x)>3x+1,x∈(0,1)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

试补充定义f(0),使函数f(x)=
x2+x
x
在点x=0处连续,那么f(0)等于(  )
A.0B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=-x2+a(5-a)x+b.
(1)若不等式f(x)>0的解集为(-1,7)时,求实数a,b的值;
(2)当a∈[-1,2)时,f(3)<0恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

偶函数f(x)在[0,+∞)上为减函数,不等式f(ax-1)>f(2+x2)恒成立,则a的取值范围是(  )
A.(-2,2
3
)
B.(-2
3
,2)
C.(-2
3
,2
3
)
D.(-2,2)

查看答案和解析>>

同步练习册答案