| A. | α<∠A′CA | B. | α>∠A′CA | C. | α<∠A′CD | D. | α>∠A′CD |
分析 假设ABCD是矩形,且平面ABD⊥平面ABCD,计算三个角的大小,使用排除法选择答案.
解答
解:∵AB∥CD,∴∠A′BA为异面直线CD与A′B所成的角.
假设四边形ABCD是正方形,AB=1,平面ABD⊥平面ABCD.
连结AC,A′A,A′C.则A′O⊥平面ABCD,A′O=AO=BO=CO=DO=$\frac{1}{2}AC$=$\frac{\sqrt{2}}{2}$,
∴A′A=A′C=A′B=A′D=1,
∴△A′BA,△A′CD是等边三角形,△A′CA是等腰直角三角形,
∴∠A′CA=45°,∠A′CD=∠A′BA=60°,
即α>∠A′CA,α=∠A′CD.排除A,C,D.
故选B.
点评 本题考查了异面直线所成角的计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}-1}{2}$ | B. | -$\frac{\sqrt{2}+1}{2}$ | C. | -1 | D. | $\frac{1-\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com