精英家教网 > 高中数学 > 题目详情

已知命题p:x1,x2是方程x2―mx―2=0的两个实根,不等式a2―5a―3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解,若命题“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.

答案:
解析:

  解:∵是方程的两个实根,

  ∴

  ∴  2分

  ∴当时,  3分

  由不等式对任意实数恒成立,可得

  解得

  ∴命题为真命题时,  5分

  命题不等式有解

  (1)当时,显然有解;

  (2)当时,有解

  (3)当时,∵有解,∴,有

  ∴

  ∴命题不等式有解时  10分

  ∵命题“”为假命题,“”为真命题

  ∴命题的真假性有两种情况:假、真  11分

  当命题假时,有

  ,得  12分

  当真时,有

  ,得  13分

  ∴实数的取值范围为  14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:x1、x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:只有一个实数x满足不等式x2+2
2
ax+11a≤0

若命题p是假命题,同时命题q是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出的4个命题:
①已知命题p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
<0
,则?p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
≥0

②函数f(x)=2-x-sinx在[0,2π]上恰好有2个零点;
③对于定义在区间[a,b]上的连续不断的函数y=f(x),存在c∈(a,b),使f(c)=0的必要不充分条件是f(a)f(b)<0;
④对于定义在R上的函数f(x),若实数x0满足f(x0)=x0,则称x0是f(x)的不动点.若f(x)=x2+ax+1不存在不动点,则a的取值范围是(-1,3).
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面给出的4个命题:
①已知命题p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
<0
,则?p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
≥0

②函数f(x)=2-x-sinx在[0,2π]上恰好有2个零点;
③对于定义在区间[a,b]上的连续不断的函数y=f(x),存在c∈(a,b),使f(c)=0的必要不充分条件是f(a)f(b)<0;
④对于定义在R上的函数f(x),若实数x0满足f(x0)=x0,则称x0是f(x)的不动点.若f(x)=x2+ax+1不存在不动点,则a的取值范围是(-1,3).
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题P:x1、x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:只有一个实数x满足不等式x2+2
2
ax+11a≤0

若命题p是假命题,同时命题q是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:江苏同步题 题型:解答题

已知命题P:x1、x2是方程x2﹣mx﹣2=0的两个实根,不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[-1,1] 恒成立;命题q:只有一个实数x满足不等式x2+ax+11a≤0,若命题p是假命题,同时命题q是真命题,求a的取值范围.

查看答案和解析>>

同步练习册答案