精英家教网 > 高中数学 > 题目详情

中,已知,则的形状是(    )

A. 直角三角形    B.  等腰三角形   C.  等边三角形   D.  等腰直角三角形

 

【答案】

B

【解析】主要考查正弦定理的应用。

解:由可得,所以,即,又由可知,所以为等腰三角形。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的某个焦点为F,双曲线G:
x2
a2
-
y2
b2
=1
(a,b>0)的某个焦点为F.
(1)请在
 
上补充条件,使得椭圆的方程为
x2
3
+y2=1
;友情提示:不可以补充形如a=
3
,b=1
之类的条件.
(2)命题一:“已知抛物线y2=2px(p>0)的焦点为F,定点P(m,n)满足n2-2pm>0,以PF为直径的圆交y轴于A、B,则直线PA、PB与抛物线相切”.命题中涉及了这么几个要素:对于任意抛物线P(x,y),定点P,以PF为直径的圆交F(0,1)轴于A、B,PA、PB与抛物线相切.试类比上述命题分别写出一个关于椭圆C和双曲线G的类似正确的命题;
(3)证明命题一的正确性.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市高新区高三2月月考理科数学试卷(解析版 题型:填空题

已知椭圆方程为),F(-c,0)和F(c,0)分别是椭圆的左 右焦点.

①若P是椭圆上的动点,延长到M,使=,则M的轨迹是圆;

②若P是椭圆上的动点,则

③以焦点半径为直径的圆必与以长轴为直径的圆内切;

④若在椭圆上,则过的椭圆的切线方程是

⑤点P为椭圆上任意一点,则椭圆的焦点角形的面积为.

以上说法中,正确的有                

 

查看答案和解析>>

科目:高中数学 来源:2014届山西省高二第一次月考理科数学试卷(解析版) 题型:选择题

已知结论:在正三角形ABC中,若D是边BC的中点,G是三角

形ABC的重心,则AG:GD=2:1,若把该结论推广到空间中,则有结论:在棱长都相等的

四面体ABCD中,若三角形BCD的中心为M,四面体内部一点O到各面的距离都相等,

则AO:OM=(    )

A.1               B.2          C.3          D.4

 

查看答案和解析>>

科目:高中数学 来源:2014届四川绵阳南山中学高一5月月考数学试卷(解析版) 题型:填空题

在平行四边形ABCD中,已知A-1,2,B3,4,C3,0,则该平行四形的面积为       .

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的某个焦点为F,双曲线G:
x2
a2
-
y2
b2
=1
(a,b>0)的某个焦点为F.
(1)请在______上补充条件,使得椭圆的方程为
x2
3
+y2=1
;友情提示:不可以补充形如a=
3
,b=1
之类的条件.
(2)命题一:“已知抛物线y2=2px(p>0)的焦点为F,定点P(m,n)满足n2-2pm>0,以PF为直径的圆交y轴于A、B,则直线PA、PB与抛物线相切”.命题中涉及了这么几个要素:对于任意抛物线P(x,y),定点P,以PF为直径的圆交F(0,1)轴于A、B,PA、PB与抛物线相切.试类比上述命题分别写出一个关于椭圆C和双曲线G的类似正确的命题;
(3)证明命题一的正确性.

查看答案和解析>>

同步练习册答案