精英家教网 > 高中数学 > 题目详情
设f(x)=
1-
1-x
x
(x<0)
a+x2(x≥0)
,要使f (x)在(-∞,+∞)内连续,则a的值为(  )
A、0
B、1
C、
1
2
D、不存在
分析:本题解析式是一个分段函数,且其中一个在x=0处无定义,故需对此解析式进行恒等变形,利用极限的思想求出在x=0处的函数值,利用函数的连续性建立方程求解参数值.
解答:解:当x<0时,
1-
1-x
x
=
x
x(1+
1+x
)
=
1
1+
1+x
故当x趋向于0时函数值趋向于
1
2

又f (x)在(-∞,+∞)内连续,故有
1
2
=a+0
解得a=
1
2

故选C
点评:本题考点是函数的连续性,考查通过函数的连续性得到相等关系,建立起关于参数的方程求参数,由于本题中的一段函数在端点处无意义,所以要对函数的解析式进行恒等变形,利用极限的思想求得端点函数值,建立方程求参数,在利用函数的连续性建立方程求参数时要注意此技巧的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设f(x)是定义在R上的偶函数,且f(2+x)=f(2-x),当x∈[-2,0)时,f(x)=数学公式-1,若在区间(-2,6)内的关于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4个不同的实数根,则实数a的取值范围是


  1. A.
    数学公式,1)
  2. B.
    (1,4)
  3. C.
    (1,8)
  4. D.
    (8,+∞)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省石家庄一中高三(上)暑期第二次考试数学试卷(理科)(解析版) 题型:选择题

设f(x)是定义在R上的偶函数,且f(2+x)=f(2-x),当x∈[-2,0)时,f(x)=-1,若在区间(-2,6)内的关于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4个不同的实数根,则实数a的取值范围是( )
A.(,1)
B.(1,4)
C.(1,8)
D.(8,+∞)

查看答案和解析>>

科目:高中数学 来源:2012年东北三省三校高考数学一模试卷(理科)(解析版) 题型:选择题

设f(x)是定义在R上的偶函数,且f(2+x)=f(2-x),当x∈[-2,0)时,f(x)=-1,若在区间(-2,6)内的关于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4个不同的实数根,则实数a的取值范围是( )
A.(,1)
B.(1,4)
C.(1,8)
D.(8,+∞)

查看答案和解析>>

同步练习册答案