精英家教网 > 高中数学 > 题目详情

甲、乙两人计划从三个景点中各选择两个游玩,则两人所选景点不全相同的选法共有(    )

A.3种             B.6种              C.9种              D.12种

 

【答案】

B

【解析】

试题分析:因为每一个有3种选择,A,B;A,C;B,C;那么对于甲和乙的所有的选法共有种,但是要求甲乙不能选景点不全相同,那么可知景点相同的选法有3种,故间接法可知共有9-3=6种,故选B.

考点:本试题考查了排列组合的运用。

点评:根据分步计数原理,那么先确定出各个人的选择的景点的情况,运用间接法的思想来求解所求的选法,比用直接法要好解,注意这种解题方法,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.
(1)若抽奖规则是从一个装有6个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;
(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人计划从A、B、C三个景点中各选择两个游玩,则两人所选景点不全相同的选法共有
6
6
种.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省通化市梅河口五中高一(下)第一次月考数学试卷(解析版) 题型:解答题

在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.
(1)若抽奖规则是从一个装有6个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;
(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学必做100题(必修3)(解析版) 题型:解答题

在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.
(1)若抽奖规则是从一个装有6个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;
(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.

查看答案和解析>>

同步练习册答案