精英家教网 > 高中数学 > 题目详情
证明:任何不大于n!的自然数,都能表示成不多于n个数的和,在这些加数中,没有两个是相同的,而且任何一个都是n!的因数.

证明:对n用数学归纳法,

n=1时,显然.

设n时结论真.

对a≤(n+1)!,将a除以n+1得a=d(n+1)+r,这里d≤n!,0≤r<n+1.

由归纳假设,d=d1+d2+…+dl,l≤n.且所有di是n!的不同因数(i=1,2,…,l).

于是                              a=d1(n+1)+…+dl(n+1)+r

这个和中的加数不多于n+1个,其中每一个都是(n+1)!的因数,且全不相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定有限个正数满足条件T:每个数都不大于50且总和L=1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r1与所有可能的其他选择相比是最小的,r1称为第一组余差;然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r2;如此继续构成第三组(余差为r3)、第四组(余差为r4)、…,直至第N组(余差为rN)把这些数全部分完为止.
(Ⅰ)判断r1,r2,…,rN的大小关系,并指出除第N组外的每组至少含有几个数;
(Ⅱ)当构成第n(n<N)组后,指出余下的每个数与rn的大小关系,并证明rn-1
150n-Ln-1

(Ⅲ)对任何满足条件T的有限个正数,证明:N≤11.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=
0   当i∉AJ
1        当i∈AJ时  

(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:
5cmn
-
cmcn
>1对任何正整数m,n都成立.(第1小题用表)
1 2 3 4 5 6 7
1 0
2 0
3 0
4 0
5 0
6 0
7 0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=数学公式
(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:数学公式-数学公式>1对任何正整数m,n都成立.(第1小题用表)
1234567
10
20
30
40
50
60
70

查看答案和解析>>

科目:高中数学 来源:2010年安徽省安庆一中高考数学三模试卷(理科)(解析版) 题型:解答题

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=
(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:->1对任何正整数m,n都成立.(第1小题用表)
1234567
1
2
3
4
5
6
7

查看答案和解析>>

同步练习册答案