精英家教网 > 高中数学 > 题目详情

(本小题满分13分)

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.

(I)求椭圆的方程和其“准圆”方程;

(II )点P是椭圆C的“准圆”上的一个动点,过点P作直线,使得与椭圆C都只有一个交点,且分别交其“准圆”于点MN .

(1)当P为“准圆”与轴正半轴的交点时,求的方程;

(2)求证:|MN|为定值.

 

【答案】

(1)(2)略

【解析】(I)因为,所以                         ……………2分

所以椭圆的方程为

准圆的方程为  .                                    ……………4分

(II)(1)因为准圆轴正半轴的交点为P(0,2),    ……………5分

设过点P(0,2),且与椭圆有一个公共点的直线为,            

所以,消去y ,得到 ,       ……………6分

因为椭圆与只有一个公共点,

所以 ,                                 ……………7分

解得.                                                      ……………8分

所以方程为.                                ……………9分

(2)①当中有一条无斜率时,不妨设无斜率,

因为与椭圆只有一个公共点,则其方程为

方程为时,此时与准圆交于点

此时经过点(或)且与椭圆只有一个公共点的直线是

(或),即(或),显然直线垂直;

同理可证 方程为时,直线垂直.                   ……………10分

② 当都有斜率时,设点,其中

设经过点与椭圆只有一个公共点的直线为,

,消去得到

,

经过化简得到:,

因为,所以有,

的斜率分别为,因为与椭圆都只有一个公共点,[来源:]

所以满足上述方程,

所以,即垂直.                                   ……………12分

综合①②知:因为经过点,又分别交其准圆于点MN,且垂直,

所以线段MN为准圆的直径,所以|MN|=4.        ……………13分

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案