精英家教网 > 高中数学 > 题目详情
17.已知x,y∈R*,2y+x-xy=0,若x+2y>m2+2m恒成立,则m的取值范围是(-4,2).

分析 方程成立为2y+x=xy,同时除以xy得$\frac{2}{x}+\frac{1}{y}$=1,利用均值定理的变形可得$\frac{2}{x}$•$\frac{1}{y}$≤$(\frac{\frac{2}{x}+\frac{1}{y}}{2})^{2}$=$\frac{1}{4}$,得出xy≥8(当x=2y时,等号成立),再次利用均值定理求出x+2y的最小值,进而得出m的范围.

解答 解:2y+x-xy=0,
∴2y+x=xy,
∴$\frac{2}{x}+\frac{1}{y}$=1,
∵$\frac{2}{x}$•$\frac{1}{y}$≤$(\frac{\frac{2}{x}+\frac{1}{y}}{2})^{2}$=$\frac{1}{4}$,
∴xy≥8(当x=2y时,等号成立),
∵x+2y≥2$\sqrt{2xy}$≥8(当x=2y时,等号成立),
∴m2+2m<8,解得-4<m<2.
故答案为为(-4,2).

点评 考查了均值定理的应用和恒成立问题的转换.应注意均值定理中等号成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知全集为R,集合A={x|($\frac{1}{2}$)x≤1},B={x|x≥2},A∩(∁RB)=(  )
A.[0,2)B.[0,2]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C的顶点为坐标原点,焦点为F(0,1),
(1)求抛物线C的方程;
(2)过点F作直线l交抛物线于A,B两点,若直线AO,BO分别与直线y=x-2交于M,N两点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|-2≤x≤2},B={x|a+1<x<2a-3}
①若A∪B=B,求实数a的取值范围.
②若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(理)现有11个保送大学的名额分配给8个班级,每班至少有1个名额,则名额分配的方法共有(  )
A.56种B.112种C.120种D.240种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设数列{an}满足:a1=$\sqrt{3}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$,其中,[an]、{an}分别表示正数an的整数部分、小数部分,则a2016=3023+$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx+x2
(Ⅰ)当a=1,函数g(x)=f(x)+$\frac{2}{x+1}$-x2,求g(x)在区间[1,+∞)上的最小值;
(Ⅱ)若存在x∈[1,e]时,使f(x)≤(a+2)x恒成立,求实数a的取值范围;
(Ⅲ)求证:ln(n+1)>$\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+…+\frac{1}{2n+1}$(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>0,b>0,且a+b=ab,则a+$\frac{b}{4}$的最小值为(  )
A.1B.$\frac{7}{4}$C.2D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$的值的一个流程图,其中判断框内应填入的条件是(  )
A.i≤21B.i≤11C.i≥21D.i≥11

查看答案和解析>>

同步练习册答案