精英家教网 > 高中数学 > 题目详情
7.已知正数数列{an}满足an+1=2an,则此数列{an}是(  )
A.递增数列B.递减数列
C.常数列D.无法确定数列的增减性

分析 由题意可得an+1-an>0,可得数列单调递增.

解答 解:∵正数数列{an}满足an+1=2an
∴an+1-an=2an-an=an>0,
∴an+1>an,即数列{an}为递增数列.
故选:A

点评 本题考查等比数列的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2sin(ωx+φ)(x∈R,ω>0,0<φ<$\frac{π}{2}$)有两个相邻的零点:-$\frac{π}{6}$,$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)若f(α)=$\frac{2\sqrt{2}}{3}$,求cos6α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知e是自然对数的底数,函数f(x)的定义域为R,2f(x)•2f′(x)>2,f(0)=27${\;}^{\frac{2}{3}}$-2${\;}^{lo{{g}_{2}}{3}}$×log2$\frac{1}{8}$+2lg($\sqrt{3+\sqrt{5}}$+$\sqrt{3-\sqrt{5}}$)-11,则不等式$\frac{f(x)-1}{{e}^{ln7-x}}$>1的解集为(  )
A.(-∞,0)B.(0,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为4.若以原点为圆心、椭圆短半轴长为半径的圆与直线y=x+2相切,则椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,已知$b=5\sqrt{3}$,c=15,B=30°,则角C=60°或120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设z=2x+y,其中变量x和y满足条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,求z的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数的定义域:①f(x)=2x+$\sqrt{lnx}$    ②f(x)=$\frac{\sqrt{x(x-3)}}{2x-1}$     ③f(x)=$\frac{\sqrt{lgx}}{x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知:平面α∥β,直线AB,AC分别与α,β交于点D,B和点E,C,求证:$\frac{AD}{AB}$=$\frac{AE}{AC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{an}中,an=2n-1,Sn=a1+a2+…+an,则$\underset{lim}{x→∞}$$\frac{{a}_{n}^{2}}{{S}_{n}}$=4.

查看答案和解析>>

同步练习册答案