精英家教网 > 高中数学 > 题目详情
已知P为抛物线y2=4x上一点,设P到准线的距离为d1,P到点A(1,4)的距离为d2,则d1+d2的最小值为
4
4
分析:先根据抛物线定义儿可知P到准线的距离为d1=|PF|,进而判断出当A,P,F三点共线时,所求的值最小.
解答:解:∵y2=4x,焦点坐标为F(1,0)
根据抛物线定义可知P到准线的距离为d1=|PF|
d1+d2=|PF|+|PA|
进而可知当A,P,F三点共线时,
d1+d2的最小值=|AF|=4
故答案为4
点评:本题主要考查了抛物线的简单应用.考查了学生对抛物线定义的理解和应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是(  )
A、2
5
-1
B、2
5
-2
C、
17
-1
D、
17
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4(x-1)上动点,PA⊥y轴交y于A,点B在y轴上,且B点分向量
OA
的比为1:2,求BP中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x的焦点,过P的直线l与抛物线交与A、B两点,若点Q在直线l上,且满足AP•QB=AQ•PB,则点Q总在定直线x=-1上.试猜测如果点P为椭圆
x2
16
+
y2
9
=1
的左焦点,过P的直线l与椭圆交与A、B两点,点Q在直线l上,且满足AP•QB=AQ•PB,则点Q总在定直线
x=-
16
7
7
x=-
16
7
7
上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是
17
-1
17
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=2x上任一点,则P到直线x-y+5=0距离的最小值为
 

查看答案和解析>>

同步练习册答案