精英家教网 > 高中数学 > 题目详情
20.若数列{an}的前n项和Sn=n2+2n+1,则a3+a4+a5+a6=40.

分析 利用a3+a4+a5+a6=S6-S2,即可得出.

解答 解:∵数列{an}的前n项和Sn=n2+2n+1,
则a3+a4+a5+a6=S6-S2=(62+2×6+1)-(22+2×2+1)=40.
故答案为:40.

点评 本题考查了递推关系、数列前n项和公式的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x2-$\frac{2\sqrt{a}}{a}x$+$\frac{2\sqrt{a}}{a}$-1(a>0),求证:“任意x≥1,f(x)≥0都成立”的充要条件是“a≥1“.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l1:(2a+b)x+(a+b)y+a-b=0与直线l2:m2x+2y-2n2=0恒有一个公共点,则m+n的最大值为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题p:?x∈R,均有x2≥0,则?p为(  )
A.?x0∈R,使得x2≤0B.?x∈R,均有x2≤0C.?x0∈R,使得x02<0D.?x∈R,均有x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知U={1,2,3,4,5,6,7},A={1,2,7},B={2,3,5},求A∩B,A∪B,CUA,(CUB)∩A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.则线段AB的中点M的轨迹C的方程是(  )
A.(x+$\frac{3}{2}$)2+y2=$\frac{9}{4}$(在C1内)B.(x+$\frac{3}{2}$)2+y2=$\frac{9}{4}$
C.(x-$\frac{3}{2}$)2+y2=$\frac{9}{4}$(在C1内)D.(x-$\frac{3}{2}$)2+y2=$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=ax2+2x在[2,4]上单调,则a的取值范围是a≤-$\frac{1}{2}$或a≥-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在复平面内,复数z=i(1+2i)的共轭复数(  )
A.2-iB.-2-iC.2+iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的偶函数f(x)在[0,+∞)内单调递减,则下列判断正确的是(  )
A.f(2a)<f(-a)B.f(π)>f(-3)C.$f(-\frac{{\sqrt{3}}}{2})<f(\frac{4}{5})$D.f(a2+1)<f(1)

查看答案和解析>>

同步练习册答案