精英家教网 > 高中数学 > 题目详情
如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C东偏北60°方向走10米到位置D,测得∠ADB=45°,则塔AB的高度为(  )
分析:设塔高AB为x米,利用解直角三角形知识算出BC=
AB
tan60°
=
3
3
x、BD=x,在△BCD中根据余弦定理,得BD2=BC2+CD2-2BC•CDcos∠BCD,代入数据得到关于x的一元二次方程,解之得x=10
3
,即得塔AB的高度.
解答:解:设塔高AB为x米,根据题意可得
∵在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,
∴BC=
AB
tan60°
=
3
3
x,
同理在Rt△ABD中,可得BD=AB=x.
又∵在△BCD中,CD=10,∠BCD=30°+90°=120°,
∴由余弦定理,得BD2=BC2+CD2-2•BC•CDcos120°,
即x2=(
3
3
x)2+102-2×
3
3
x×10×(-
1
2
),化简得x2-5
3
x-100=0
解得x=10
3
(x=-5
3
舍去).
即塔AB的高度为10
3
米.
故选:B
点评:本题给出实际应用问题,利用解三角形的知识求塔AB的高度.着重考查了方位角的概念、直角三角形中三角函数的定义和解三角形的实际应用等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是
 
米.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,为测得河对岸塔AB的高,先在河岸上选一点C,使在C塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔高AB的高度为(  )

查看答案和解析>>

科目:高中数学 来源:2014届江西省高三第三次月考理科数学试卷(解析版) 题型:填空题

如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是___  _米.

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南师大附中海口中学高三(上)元月月考数学试卷(文科)(解析版) 题型:填空题

如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是    米.

查看答案和解析>>

同步练习册答案