精英家教网 > 高中数学 > 题目详情

若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.

解:若f(x)=|4x-x2|+a有4个零点,即方程|4x-x2|+a=0有4个根,
即方程|4x-x2|=-a有4个根.
令g(x)=|4x-x2|,h(x)=-a,作出g(x)的图象,
由图象可知要使方程|4x-x2|=-a有4个根,则g(x)与h(x)的图象应有4个交点,
∴0<-a<4,即-4<a<0,
∴a的取值范围是(-4,0)
分析:本题应用图象法,先将原问题转化为方程|4x-x2|=-a有4个根的问题,作出g(x)=|4x-x2|的图象,结合图象分析得0<-a<4,从而原问题得解.
点评:本题主要考查了绝对值函数的图象和图象变化及数形结合思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在区间[2,+∞)内至少存在一个实数c使f(c)>0,则实数P的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|4-x2|的定义域为[a,b],值域为[0,2],定义区间[a,b]的长度为b-a,则区间[a,b]长度的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=4+ax(a>0且a≠1)在[1,2]上的最大值比最小值大
a2
,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在区间[2,+∞)内至少存在一个实数c使f(c)>0,则实数P的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,f(loga x)=(x-).

(1)试证明函数y=f(x)的单调性.

(2)是否存在实数m满足:当y=f(x)的定义域为(-1,1)时,有f(1-m)+f(1-m2)<0?若存在,求出其取值范围;若不存在,请说明理由.

(3)若函数f(x)-4恰好在(-∞,2)上取负值,求a的值.

查看答案和解析>>