精英家教网 > 高中数学 > 题目详情
1.在ABC中,角A,B,C所对的边分别为a,b,c.若$sin(A+B)=\frac{1}{3}$,a=3,c=4,则sinA=$\frac{1}{4}$.

分析 由已知利用三角形内角和定理,诱导公式可求sinC,进而利用正弦定理即可计算得解.

解答 解:∵$sin(A+B)=\frac{1}{3}$,a=3,c=4,
∴sinC=sin(A+B)=$\frac{1}{3}$,
∴sinA=$\frac{a•sinC}{c}$=$\frac{3×\frac{1}{3}}{4}$=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题主要考查了三角形内角和定理,诱导公式,正弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列语句中不是命题的为(  )
A.中国女排真棒!B.闪光的东西并非都是金子
C.经过三点确定一个平面D.3-5=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.关于x的不等式${({\frac{1}{2}})^x}≤{({\frac{1}{2}})^{x+1}}+1$的解集是{x|x≥-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-lnx,F(x)=ex+ax,其中x>0.
(1)若a<0,f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)设函数h(x)=x2-f(x)有两个极值点x1、x2,且x1∈(0,$\frac{1}{2}$),求证:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若定义运算a*b为:a*b=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,如1*2=1,则函数f(x)=2x*2-x的值域为(  )
A.RB.(0,1]C.(0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用数学归纳法证明f(x)=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$(n∈N*)的过程中,假设当n=k时成立,则当n=k+1时,左边f(k+1)=(  )
A.f(k)+$\frac{1}{{2}^{k+1}-1}$
B.f(k)+$\frac{1}{{2}^{k+1}}$
C.f(k)+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$
D.f(k)+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$的离心率为$\frac{5}{4}$,焦点到渐近线的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}的前n项和为Sn,2Sn=nan+5n
(Ⅰ)证明数列{an}为等差数列;
(Ⅱ)已知S3=21,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$f(x)={cos^2}x-{sin^2}x+2\sqrt{3}sinxcosx+1$
求(1)f(x)的最小正周期及单调递增区间;
(2)$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,f(x)-3≥m恒成立,求实数m的范围.

查看答案和解析>>

同步练习册答案