精英家教网 > 高中数学 > 题目详情

【题目】设方程(m+1)|ex﹣1|﹣1=0的两根分别为x1 , x2(x1<x2),方程|ex﹣1|﹣m=0的两根分别为x3 , x4(x3<x4).若m∈(0, ),则(x4+x1)﹣(x3+x2)的取值范围为(
A.(﹣∞,0)
B.(﹣∞,ln
C.(ln ,0)
D.(﹣∞,﹣1)

【答案】B
【解析】解:由方程(m+1)|ex﹣1|﹣1=0的两根为x1 , x2(x1<x2),可得 , 求得x1=ln ,x2=ln
由方程|ex﹣1|﹣m=0的两根为x3 , x4(x3<x4),可得
求得x3=ln(1﹣m),x4=ln(1+m).
∴(x4+x1)﹣(x3+x2)=lnm﹣ln =ln
令t= ,则原式=lnt,且
由m∈(0, ),可得 0<
,则0
故原式=lnt∈(﹣∞,ln ),
故选:B.
由条件求得x1 , x2 , x3 , x4 , 得到(x4+x1)﹣(x3+x2)=ln .令t= ,则原式=lnt,利用不等式的基本性质求得 的范围,可得t的范围,
从而求得lnt的范围,即为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位.且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=6sinθ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在(m,n)上的导函数为g(x),x∈(m,n),g(x)若的导函数小于零恒成立,则称函数f(x)在(m,n)上为“凸函数”.已知当a≤2时, ,在x∈(﹣1,2)上为“凸函数”,则函数f(x)在(﹣1,2)上结论正确的是(
A.既有极大值,也有极小值
B.有极大值,没有极小值
C.没有极大值,有极小值
D.既无极大值,也没有极小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆E的方程为 +y2=1(a>1),O为坐标原点,直线l与椭圆E交于点A,B,M为线段AB的中点.
(1)若A,B分别为E的左顶点和上顶点,且OM的斜率为﹣ ,求E的标准方程;
(2)若a=2,且|OM|=1,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.
(1)求某户居民用电费用 (单位:元)关于月用电量 (单位:度)的函数解析式;
(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的占80%,求 的值;

(3)在满足(2)的条件下,估计1月份该市居民用户平均用电费用(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , Sn=2an﹣n(n∈N*).
(1)求证:数列{an+1}成等比数列;
(2)求数列{an}的通项公式;
(3)数列{an}中是否存在连续三项可以构成等差数列?若存在,请求出一组适合条件的三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三棱柱ABC﹣A1B1C1中,B1B⊥平面ABC,∠ABC=90°,B1B=AB=2BC=4,D、E分别是B1C1 , A1A的中点.
(1)求证:A1D∥平面B1CE;
(2)设M是的中点,N在棱AB上,且BN=1,P是棱AC上的动点,直线NP与平面MNC所成角为θ,试问:θ的正弦值存在最大值吗?若存在,请求出 的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f'(x)是函数f(x)(x∈R)的导函数,f(0)=1,且 ,则4f(x)>f'(x)的解集为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1中,E,F分别是AD,DD1的中点,AB=4,则过B,E,F的平面截该正方体所得的截面周长为(
A.6 +4
B.6 +2
C.3 +4
D.3 +2

查看答案和解析>>

同步练习册答案