精英家教网 > 高中数学 > 题目详情

(本小题共14分)

已知函数

(I)若,求函数的解析式; 

(II)若,且在区间上单调递增,求实数的取值范围.

 (共14分)

解:(Ⅰ)因为 ,                            …………………2分

   ,              …………………4分

所以的解析式为.                            …………………5分

(Ⅱ)若,则 ,   …………………6分

  (1)当,即时,恒成立,那么上单调递增,

所以,当时,在区间上单调递增;              …………………8分

(2)解法1:当,即时,

解得

                                                                …………………9分

列表分析函数的单调性如下:

…………………10分

要使函数在区间上单调递增,

只需

解得.                                      …………………13分  

解法2:当,即时,

因为的对称轴方程为                  …………………9分

要使函数在区间上单调递增,

解得.                                      …………………13分  

综上:当时,函数在区间上单调递增.            …………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共14分)

      数列的前n项和为,点在直线

上.

   (I)求证:数列是等差数列;

   (II)若数列满足,求数列的前n项和

   (III)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题共14分)

如图,四棱锥的底面是正方形,,点E在棱PB上。

(Ⅰ)求证:平面

(Ⅱ)当EPB的中点时,求AE与平面PDB所成的角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2009北京理)(本小题共14分)

已知双曲线的离心率为,右准线方程为

(Ⅰ)求双曲线的方程;

(Ⅱ)设直线是圆上动点处的切线,与双曲线

于不同的两点,证明的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题

(本小题共14分)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,点E是PC的中点,作EFPB交PB于点F

⑴求证:PA//平面EDB

⑵求证:PB平面EFD

⑶求二面角C-PB-D的大小

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010年北京市崇文区高三下学期二模数学(文)试题 题型:解答题

(本小题共14分)

正方体的棱长为的交点,的中点.

(Ⅰ)求证:直线∥平面

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

 

查看答案和解析>>

同步练习册答案