数列
的首项为3,
为等差数列且
,若
,则
( )
A.0 B.3 C.8 D.11
科目:高中数学 来源: 题型:
| 1 |
| an |
| pn+q |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 | anan+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分16分)从数列
中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列
的一个子数列.
设数列
是一个首项为
、公差为![]()
的无穷等差数列(即项数有无限项).
(1)若
,
,
成等比数列,求其公比
.
(2)若
,从数列
中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为
的无穷等比子数列,请说明理由.
(3)若
,从数列
中取出第1项、第![]()
项(设
)作为一个等比数列的第1项、第2项,试问当且仅当
为何值时,该数列为
的无穷等比子数列,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分16分)从数列
中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列
的一个子数列.
设数列
是一个首项为
、公差为![]()
的无穷等差数列(即项数有无限项).
(1)若
,
,
成等比数列,求其公比
.
(2)若
,从数列
中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为
的无穷等比子数列,请说明理由.
(3)若
,从数列
中取出第1项、第![]()
项(设
)作为一个等比数列的第1项、第2项,试问当且仅当
为何值时,该数列为
的无穷等比子数列,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省常州中学高三最后冲刺综合练习数学试卷4(文科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com