精英家教网 > 高中数学 > 题目详情
4.下列二次函数的图象开口最大的是(  )
A.y=-x2B.y=2x2+3x+1C.y=-$\frac{1}{2}$x2-xD.y=3x2+x-1

分析 a的绝对值决定抛物线的开口大小,|a|越大抛物线开口就越小;|a|越小抛物线开口就越大,问题得以解决.

解答 解:因为|-$\frac{1}{2}$|<|-1|<|2|<|3|,
所以y=-$\frac{1}{2}$x2-x的开口最大,
故选:C.

点评 本题考查了二次函数的图象和性质,关键是掌握a的绝对值决定抛物线的开口大小的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在同一个周期内,当x=$\frac{π}{4}$时y取最大值1,当x=$\frac{7π}{12}$时,y取最小值-1.
(Ⅰ)求函数的解析式y=f(x)
(Ⅱ)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象?
(Ⅲ)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足:a1=1,an+1=an+1(n∈N*).数列{bn}的前n项和为Sn,且Sn+bn=2(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)令数列{cn}满足cn=anbn,求证:其前n项和Tn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)的定义域是R,对任意实数x,满足f(x+2)=-f(x),当x∈[0,4)时,f(x)=x2+2x.
(1)求证:函数f(x)是周期函数;
(2)求f(-7).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知焦点在x轴上的椭圆C过点(-2,0),且离心率为$\frac{\sqrt{3}}{2}$,Q为椭圆C的右顶点.
(1)求椭圆C的标准方程;
(2)已知过点N($\frac{6}{5}$,0)的直线l与椭圆C交于A,B两点,求证:以AB为直径的圆必过点Q.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某外国语学校为满足学生参加自主招生考试的需要,开设各种各样的课外活动小组,根据调查,该学校在外国语辅导方面开设了英语、德语、日语三个小组.三个小组参加的人数如表所示.
 小组 英语德语 日语 
 人数 320 240200
为调查课外小组开展情况以及学生对课外小组活动的意见,学校课外活动管理部采用分层抽样的方法从中抽取一个容量为n的样本,从德语小组抽取的同学比英语小组抽取的同学少两名.
(1)求三个小组分别抽取多少人参加调查;
(2)若从德语小组抽取的同学中有两名女同学,要从德语小组中选出两名同学执行该小组活动的监督任务,求至少有一名女同学被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(3x+2)=9x+5,则f(x)的表达式是(  )
A.3x+1B.9x-1C.3x-1D.9x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的导教:
(1)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$);
(2)y=($\sqrt{x}$+1)($\frac{1}{\sqrt{x}}$-1);
(3)y=xtanx;
(4)y=x-sin$\frac{x}{2}$cos$\frac{x}{2}$;
(5)y=3lnx+ax(a>0,且a≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知tanθ=2,则$\frac{sinθ}{si{n}^{3}θ-co{s}^{3}θ}$=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{10}{7}$D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案