精英家教网 > 高中数学 > 题目详情
已知P是双曲线的右支上一点,A1,A2分别为双曲线的左、右顶点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,有下列命题:
①双曲线的一条准线被它的两条渐近线所截得的线段长度为
②若|PF1|=e|PF2|,则e的最大值为
③△PF1F2的内切圆的圆心横坐标为a;
其中正确命题的序号是   
【答案】分析:分别求得双曲线的渐近线和准线方程,进而求得准线被它的两条渐近线所截得的线段长度判断①正确.
根据双曲线的定义可知|PF1|-|PF2|=2a=(e-1)|PF2|≥(e-1)(c-a),进而求得e的范围,判断②不正确.
设△PF1F2的内切圆的圆心为O,内切圆切PF1于A点,PF2于B点,F1F2于C点,根据双曲线的定义可知|PF1|-|PF2|=2a.进而根据|PF1|=|PA|+|AF1|,|PF2|=|PB|+|BF2|,求得C的横坐标,判断③正确.
解答:解:双曲线的渐进线为y=±x,准线方程为x=,代入渐进线方程得y=±=
∴准线被它的两条渐近线所截得的线段长度为2×=故①正确.
∵|PF1|-|PF2|=2a=(e-1)|PF2|≥(e-1)(c-a),整理得(e-1)•(e-1)≤2,解得,e≤1+所以e的最大值是1+②不正确.
设△PF1F2的内切圆的圆心为O,内切圆切PF1于A点,PF2于B点,F1F2于C点,
因为是内切圆,所以有OA⊥PF1,OB⊥PF2,OC⊥F1F2,且PA=PB,AF1=F1C,BF2=CF2.因为OC⊥F1F2,即x轴,只要求出C点的横坐标,就等于求出了O点的横坐标.
由双曲线的性质可知
∵|PF1|-|PF2|=2a
∵|PF1|=|PA|+|AF1|,|PF2|=|PB|+|BF2|,
∴|PF1|-|PF2|=(|PA|+|AF1|)-(|PB|+|BF2|)=|CF1|-|CF2|=2a,
又∵|CF1|+|CF2|=2c,联立可得CF2=c-a,∵F2(c,0),
∴C(a,0).
∴O点横坐标就为a,故③正确.
故答案为①③
点评:本题主要考查了双曲线的应用.解题的前提是对双曲线的基本知识能综合掌握.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年四川省成都市高三三诊模拟考试文科数学 题型:填空题

.已知P是双曲线的右支上一点,A1, A2分别为双曲线的左、右顶点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为,有下列命题:

    ①双曲线的一条准线被它的两条渐近线所截得的线段长度为

    ②若

    ③的内切圆的圆心横坐标为

    ④若直线PF1的斜率为

    其中正确的命题的序号是           。

 

查看答案和解析>>

科目:高中数学 来源:2010年四川省高三第三次模拟考试(理) 题型:填空题

已知P是双曲线的右支上一点,A1,A2分别为双曲线的左、右顶点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,有下列命题:

    ①双曲线的一条准线被它的两条渐近线所截得的线段长度为

②若,则e的最大值为

的内切圆的圆心横坐标为a;

④若直线PF1的斜率为k,则

其中正确的命题的序号是                  .

 

查看答案和解析>>

科目:高中数学 来源:2011年四川省成都市石室中学高考数学三模试卷(文科)(解析版) 题型:填空题

已知P是双曲线的右支上一点,A1,A2分别为双曲线的左、右顶点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,有下列命题:①双曲线的一条准线被它的两条渐近线所截得的线段长度为
②若|PF1|=e|PF2|,则e的最大值为;③△PF1F2的内切圆的圆心横坐标为a;④若直线PF1的斜率为k,则e2-k2>1,其中正确命题的序号是   

查看答案和解析>>

科目:高中数学 来源:2009年北京101中学高考数学三模试卷(文科)(解析版) 题型:解答题

已知P是双曲线的右支上一点,A1,A2分别为双曲线的左、右顶点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,有下列命题:①双曲线的一条准线被它的两条渐近线所截得的线段长度为
②若|PF1|=e|PF2|,则e的最大值为;③△PF1F2的内切圆的圆心横坐标为a;④若直线PF1的斜率为k,则e2-k2>1,其中正确命题的序号是   

查看答案和解析>>

同步练习册答案