精英家教网 > 高中数学 > 题目详情
11.设n=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$3cosxdx,则二项式(2x+$\frac{1}{\root{3}{x}}$)n的展开式中x2项的系数为(  )
A.80B.90C.120D.160

分析 先根据定积分求出n的值,再根据二项式展开式的通项公式求得x2的系数.

解答 解:n=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$3cosxdx=3sinx|${\;}_{-\frac{π}{2}}^{\frac{π}{2}}$=3[(1-(-1)]=6,
∴Tk+1=${C}_{6}^{k}$•26-k•${x}^{6-\frac{4}{3}k}$,
令6-$\frac{4}{3}$k=2,可得k=3
∴展开式中x2项的系数为${C}_{6}^{3}•{2}^{3}$=160.
故选:D

点评 本题主要考查求定积分,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,注意各项系数和与各项的二项式系数和的区别,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.直线2x+3y-1=0垂直于向量$\overrightarrow{n}$=(m,-1),则m的值为(  )
A.-$\frac{3}{2}$B.-$\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}中各项都为正数,且2$\sqrt{{S}_{n}}$=an+1,求:
(1)an的通项公式?
(2)令bn=$\frac{{a}_{n}}{{3}^{n}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点A(x,3),B(5,y),且$\overrightarrow{AB}$=(4,5),则x,y的值分别为(  )
A.x=-1,y=8B.x=1,y=8C.x=1,y=-8D.x=-1,y=-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=log2$\frac{2x+10}{3}$,则f(1)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=1+$\frac{{x}^{\frac{1}{3}}+x}{{x}^{\frac{2}{3}}+{x}^{2}}$(x∈[-b,-a]∪[a,b],其中a<b)的最大值为M,最小值为m,则M+m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线过点(2,$\sqrt{3}$),且双曲线的一个焦点在抛物线y2=4$\sqrt{7}$x的准线上,则双曲线的方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{log2an}是公差为1的等差数列,数列{an}的前n项和为Sn,则$\frac{{S}_{4}}{{S}_{2}}$的值是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,角A,B,C所对的边分别为a,b,c,且满足$sinA(sinB+\sqrt{3}cosB)=\sqrt{3}sinC$.
(1)求角A的大小;    
(2)若a=3,求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案