(满分12分)设
是抛物线
(p>0)的内接正三角形(
为坐标原点),其面积为
;点M是直线
:
上的动点,过点M作抛物线的切线MP、MQ,P、Q为切点.
(1)求抛物线的方程;
(2)直线PQ是否过定点,若过定点求出定点坐标;若不过定点,说明理由;
(3)求
MPQ面积的最小值及相应的直线PQ的方程.
(1)
;
(2)直线PQ过定点
;
(3)![]()
![]()
即
,
MPQ面积有最小值
.此时直线PQ的方程是:
..
【解析】本试题主要是考查了抛物线的方程的求解,以及直线方程的求解,和三角形面积的最值的求解的综合运用。
(1)利用其性质得到抛物线的方程;
(2)假设直线PQ过定点,那么分析其方程的特点发现结论。
(3)结合三角形的面积公式,而控制得到直线与抛物线联立方程组的思想表示弦长,然后得到求解。
解:(1).因为正
面积是
,设边长为
,
则
................................1'
又设
,
,
![]()
,![]()
![]()
,所以点A,B关于
轴对称,..............2'
于是令
可得
,抛物线方程是:
;....................4'
(2).设
,切点
,则切线MP:
,MQ:
,相较于M,所以
,可得直线PQ的方程:![]()
当
时,
与
无关,所以直线PQ过定点
;.....................8'
(3). 设
,
,由(2)知直线PQ的方程是:
,![]()
![]()
![]()
,![]()
![]()
![]()
,.............10'
又点M到直线PQ的距离为![]()
,
所以![]()
....12'
即
,
MPQ面积有最小值
.此时直线PQ的方程是:
..
科目:高中数学 来源:2011-2012学年宁夏高三上学期第二次月考理科数学试卷 题型:解答题
(本小题满分12分)设
是函数
的一个极值
点.
(1)求
与
的关系式(用
表示
),并求
的单调区间;
(2)设
,
.若存在
使得
成立,
求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com