精英家教网 > 高中数学 > 题目详情
14.用二分法求方程2x3+3x-3=0在区间(0,2)内的实根,取区间中点为x0=1,那么下一个有根的区间是(0,1).

分析 方程的实根就是对应函数f(x)的零点,由 f(1)>0,f(0)<0 知,f(x)零点所在的区间为(0,1).

解答 解:设f(x)=2x3+3x-3,
f(0)=-3<0,f(1)=2+3-3>0,
f(2)=16+6-3>0,
f(x)零点所在的区间为(0,1)
∴方程2x3+3x-3=0有根的区间是(0,1),
故答案为:(0,1).

点评 本题考查用二分法求方程的根所在的区间的方法,方程的实根就是对应函数f(x)的零点,函数在区间上存在零点的条件是函数在区间的端点处的函数值异号.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$a-\frac{2}{{2}^{x}+1}$.
(1)证明:不论a为何实数f(x)恒为增函数;
(2)当f(x)为奇函数时,确定实数a的值,并求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=$\sqrt{2x-{x}^{2}}$的定义域为区间A,值域为区间B,则∁AB=(  )
A.(1,2)B.(1,2]C.(0,1)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\left\{{\begin{array}{l}{-2x+1,x<1}\\{{x^2}-2x,x≥1}\end{array}}\right.$
(1)计算f(f(-3))与f(f(3));
(2)将函数f(x)的图象直接画在如图所示的平面直角坐标系中;
(3)若f(x)=1,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的通项公式为an=2n+1,令bn=$\frac{1}{n}({a_1}+{a_2}+…+{a_n})$,则数列{bn}的前10项和T10=75.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(2sinx,sinx),$\overrightarrow{b}$=(sinx,2$\sqrt{3}$cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且2acosB=bcosC+ccosB,若对任意满足条件的A,不等式f(A)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在周长为6的△ABO中,∠AOB=60°,点P在边AB上,PH⊥OA于H(点H在边OA上),且PH=$\frac{\sqrt{3}}{2}$,OP=$\frac{\sqrt{7}}{2}$.则边OA的长为2.1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sinA•5sinC.
(I)若a=b,求cosB;
(Ⅱ)设B=90°,且a=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.先化简,再求值:$\frac{2x}{x+1}$-$\frac{2x+6}{{x}^{2}-1}$÷$\frac{x+3}{{x}^{2}-2x+1}$,其中x=$\sqrt{2}$-1.

查看答案和解析>>

同步练习册答案