精英家教网 > 高中数学 > 题目详情
已知f(x)=(1)f(x)(2)f(x)(3)f(x)(4)f(x)

 

答案:
解析:

  解:(1)∵

        ∴ .

  (2)∵ =0,

        ∴

        ∴ 不存在。

  (3)∵ ,∴2.

  (4)∵ =6,∴=6.

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
a
b
-1
,其中向量
a
=(
3
sin2x,cosx
),
b
=(1,2cosx)(x∈R)
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别为a、b、c,f(A)=2,a=
3
,b=3,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-
12
(1+a)x2

(1)求f(x)在x=0处的切线方程;
(2)若f(x)在区间x∈(0,2]为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x+b2x+1+a
是R上奇函数.
(1)求a,b的值;
(2)对任意正数x,不等式f[k(log3x)2-2log3x]+f[2(log3x)2+k]>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x-a
2x+1
(a∈R)的图象关于坐标原点对称
(1)求a的值,并求出函数F(x)=f(x)+2x-
4
2x+1
-1的零点;
(2)若函数h(x)=f(x)+2x-
b
2x+1
在[0,1]内存在零点,求实数b的取值范围
(3)设g(x)=log4
k+x
1-x
,若不等式f-1(x)≤g(x)在x∈[
1
2
2
3
]
上恒成立,求满足条件的最小整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知f(x)=
3
sin2x+cos2x-1

(Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)若x∈[0,
π
6
]
,求f(x)的最小值及取得最小值时对应的x的取值.

查看答案和解析>>

同步练习册答案