精英家教网 > 高中数学 > 题目详情

已知函数f(x)= (a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式f(x)< .

(1)f(x)= (x≠2)
(2)当1<k<2时,原不等式的解集为{x|1<x<k或x>2};
当k=2时,原不等式的解集为{x|x>1且x≠2};
当k>2时,原不等式的解集为{x|1<x<2或x>k}.

解析试题分析:解: (1)将x1=3,x2=4分别代入方程-x+12=0,得
,                         3分
解得.
∴f(x)= (x≠2)                        5分
(2)原不等式即为<,可化为<0.     6分
即(x-2)(x-1)(x-k)>0.                          7分
①当1<k<2时,1<x<k或x>2;                    9分
②当k=2时,x>1且x≠2;                  10分
③当k>2时,1<x<2或x>k.                     12分
综上所述,当1<k<2时,原不等式的解集为{x|1<x<k或x>2};
当k=2时,原不等式的解集为{x|x>1且x≠2};
当k>2时,原不等式的解集为{x|1<x<2或x>k}.    13分
考点:函数解析式,一元二次不等式
点评:主要是考查了函数解析式以及一元二次不等式的求解,体现了分类讨论思想的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某面包厂2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该面包厂一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第年(为正整数,2012年为第一年)的利润为万元.设从2012年起的前年,该厂不开发新项目的累计利润为万元,开发新项目的累计利润为万元(须扣除开发所投入资金).
(1)求的表达式;
(2)问该新项目的开发是否有效(即开发新项目的累计利润超过不开发新项目的累计利润),如果有效,从第几年开始有效;如果无效,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在(0,+∞)上的增函数,且满足.
(1)求的值;      (2)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设为x,y正实数,且2x+5y=20,求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为平方米,矩形一边的长为米(如图所示)

(1)试将表示为的函数;
(2)问应该如何设计矩形地块的边长,使花圃占地面积取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,校园内计划修建一个矩形花坛并在花坛内装置两个相同的喷水器。已知喷水器的喷水区域是半径为5m的圆。问如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,解不等式
(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的偶函数,且当时,
(1)写出函数的解析式;
(2)若函数,求函数的最小值.

查看答案和解析>>

同步练习册答案