| 2 |
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(12分)曲线C是中心在原点,焦点在
轴上的双曲线,已知它的一个焦点F的坐标为(2,0),一条渐进线的方程为
,过焦点F作直线交曲线C的右支于P.Q两点,R是弦PQ的中点。
(Ⅰ)求曲线C的方程;
(Ⅱ)当点P在曲线C右支上运动时,求点R到
轴距离的最小值;
(Ⅲ)若在
轴在左侧能作出直线
,使以线段pQ为直径的圆与直线L相切,求m的取值范围。
查看答案和解析>>
科目:高中数学 来源:2013届江苏省高二下期中理科数学试卷(解析版) 题型:解答题
已知中心在原点,焦点在x轴上的椭圆离心率为
,且经过点
,过椭圆的左焦点作直线
交椭圆于A、B两点,以OA、OB为邻边作平行四边形OAPB。
(1)求椭圆E的方程
(2)现将椭圆E上的点的纵坐标保持不变,横坐标变为原来的一半,求所得曲线的焦点坐标和离心率
(3)是否存在直线
,使得四边形OAPB为矩形?若存在,求出直线
的方程。若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2013届山东省济宁市高二上学期期末考试理科数学 题型:解答题
(本小题满分12分)中心在原点,焦点在x轴上的椭圆C上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆C的方程;
(2)若直线
与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com