| A. | (1,+∞) | B. | (1,2] | C. | (1,$\sqrt{3}$] | D. | (1,3] |
分析 首先利用双曲线的定义求出关系式,进一步利用均值不等式建立关系式,$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$=$\frac{(2a+m)^{2}}{m}$=$\frac{4{a}^{2}}{m}$+4a+m≥8a,最后求出结果.
解答 解:设|PF2|=m,(m≥c-a)
则:根据双曲线的定义:|PF1|=2a+m,
所以$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$=$\frac{(2a+m)^{2}}{m}$=$\frac{4{a}^{2}}{m}$+4a+m≥8a当且仅当m=2a时成立.
所以:c-a≤2a
即解得:1<e≤3
故选:D.
点评 本题考查的知识要点:双曲线的定义的应用.双曲线的离心率,均值不等式的应用,属于中等题型.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>0) | B. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<0) | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1 | D. | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2-5x+6=0,则x=2”的逆命题是“若x≠2,则x2-5x+6≠0” | |
| B. | 若命题p:存在x0∈R,x02+x0+1<0,则¬p:对任意x∈R,x2+x+1≥0 | |
| C. | 若x,y∈R,则“x=y”是“xy≥${(\frac{x+y}{2})}^{2}$”的充要条件 | |
| D. | 已知命题p和q,若“p或q”为假命题,则命题p与q中必一真一假 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com