精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是(  )
A、45°B、60°C、90°D、120°
分析:先将EF平移到AB1,再利用中位线进行平移,使两条异面直线移到同一点,得到所成角,求之即可.
解答:精英家教网解:连接AB1,易知AB1∥EF,连接B1C交BC1于点
G,取AC的中点H,连接GH,则GH∥AB1∥EF.设
AB=BC=AA1=a,连接HB,在三角形GHB中,易
知GH=HB=GB=
2
2
a,故两直线所成的角即为∠HGB=60°.
故选B
点评:本题主要考查了异面直线及其所成的角,平移法是研究异面直线所成的角的最常用的方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心AA1=2
2
C1H⊥
平面AA1B1B且C1H=
5

(1)求异面直线AC与A1B1所成角的余弦值;
(2)求二面角A-A1C1-B1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心数学公式平面AA1B1B且数学公式
(1)求异面直线AC与A1B1所成角的余弦值;
(2)求二面角A-A1C1-B1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱柱ABC-A′B′C′中,点E、F、H、K分别为AC′、CB′、A′B、B′C′的中点,G为△ABC的重心.从K、H、G、B′中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为(  ).

(A)K  (B)H  (C)G    (D)B′

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:7.3 空间点、直线、平面之间的位置关系(1)(解析版) 题型:选择题

如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是( )

A.45°
B.60°
C.90°
D.120°

查看答案和解析>>

同步练习册答案