精英家教网 > 高中数学 > 题目详情

设集合A={x|-3<x<0},B={x|x<-1},A∪B=


  1. A.
    (-∞,0)
  2. B.
    (-3,-1)
  3. C.
    (-1,0)
  4. D.
    (-3,+∞)
D
分析:利用两个集合的并集的定义求出A∪B.
解答:A∪B
={x|-3<x<0}∪{x|x<-1}
={x|x<0},
故选A.
点评:本题考查集合的表示方法、两个集合的并集的定义和求法,属于容易题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|-3≤x≤4},B={x|m-1≤x≤3m-2},若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-3≤x≤2},B={x|2k-1≤x≤k+1},且A∩B=B,则实数k的取值范围是
[-1,1]∪(2,+∞)
[-1,1]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-3<x<1},B={x|log2|x|<1}则A∩B等(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-3≤x≤0},B={-2,-1,1,2},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-3≤2x-1≤3},集合B={x|y=lg(x-1)},则A∩B=(  )

查看答案和解析>>

同步练习册答案