分析 先用柯西不等式得出ab+bc+ac≤$\frac{3}{2}$,再用基本不等式ab+bc+ac≥3$\root{3}{ab•bc•ac}$,得出abc≤$\frac{\sqrt{2}}{4}$.
解答 证明:根据柯西不等式(n=3)得,
[(1+a2)+(1+b2)+(1+c2)]•($\frac{{a}^{2}}{1+{a}^{2}}$+$\frac{{b}^{2}}{1+{b}^{2}}$+$\frac{{c}^{2}}{1+{c}^{2}}$)≥(a+b+c)2,
即a2+b2+c2+3≥(a+b+c)2,
整理得,ab+bc+ac≤$\frac{3}{2}$,
再由基本不等式:ab+bc+ac≥3$\root{3}{ab•bc•ac}$,
两边立方得,a2b2c2≤$(\frac{ab+bc+ac}{3})^3$≤$\frac{1}{8}$,
所以,abc≤$\sqrt{\frac{1}{8}}$=$\frac{\sqrt{2}}{4}$,
即abc≤$\frac{\sqrt{2}}{4}$,证毕.
点评 本题主要考查了运用柯西不等式,基本不等式证明不等式,适当凑配和合理放缩是证明的关键,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 3$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | (0,$\frac{\sqrt{6}}{2}$] | C. | (0,$\sqrt{2}$] | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-x+1 | B. | y=$\sqrt{x}$ | C. | y=x2-4x+5 | D. | y=$\frac{2}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com